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Abstract

This thesis concerns the application of variational methods to the study of evolution problems
arising in fluid mechanics and in material sciences. The main focus is on weak-strong stability
properties of some curvature driven interface evolution problems, such as the two-phase
Navier–Stokes flow with surface tension and multiphase mean curvature flow, and on the
phase-field approximation of the latter. Furthermore, we discuss a variational approach to the
study of a class of doubly nonlinear wave equations.
First, we consider the two-phase Navier–Stokes flow with surface tension within a bounded
domain. The two fluids are immiscible and separated by a sharp interface, which intersects the
boundary of the domain at a constant contact angle of ninety degree. We devise a suitable
concept of varifolds solutions for the associated interface evolution problem and we establish
a weak-strong uniqueness principle in case of a two dimensional ambient space. In order to
focus on the boundary effects and on the singular geometry of the evolving domains, we work
for simplicity in the regime of same viscosities for the two fluids.
The core of the thesis consists in the rigorous proof of the convergence of the vectorial
Allen-Cahn equation towards multiphase mean curvature flow for a suitable class of multi-
well potentials and for well-prepared initial data. We even establish a rate of convergence.
Our relative energy approach relies on the concept of gradient-flow calibration for branching
singularities in multiphase mean curvature flow and thus enables us to overcome the limitations
of other approaches. To the best of the author’s knowledge, our result is the first quantitative
and unconditional one available in the literature for the vectorial/multiphase setting.
This thesis also contains a first study of weak-strong stability for planar multiphase mean
curvature flow beyond the singularity resulting from a topology change. Previous weak-strong
results are indeed limited to time horizons before the first topology change of the strong
solution. We consider circular topology changes and we prove weak-strong stability for BV
solutions to planar multiphase mean curvature flow beyond the associated singular times by
dynamically adapting the strong solutions to the weak one by means of a space-time shift.
In the context of interface evolution problems, our proofs for the main results of this thesis
are based on the relative energy technique, relying on novel suitable notions of relative energy
functionals, which in particular measure the interface error. Our statements follow from the
resulting stability estimates for the relative energy associated to the problem.
At last, we introduce a variational approach to the study of nonlinear evolution problems. This
approach hinges on the minimization of a parameter dependent family of convex functionals
over entire trajectories, known as Weighted Inertia-Dissipation-Energy (WIDE) functionals.
We consider a class of doubly nonlinear wave equations and establish the convergence, up to
subsequences, of the associated WIDE minimizers to a solution of the target problem as the
parameter goes to zero.
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CHAPTER 1
Introduction

The aim of this thesis is the application of variational methods to the study of several evolution
problems arising in physical sciences. Since the problems of interest are of different nature, we
provide two separate introductions.

Section 1.1 concerns interface evolution problems in fluid mechanics and material sciences,
hence serves as a general introduction to Chapters 2-3-4, which inspire the title of this thesis.
On the other hand, Section 1.2 introduces the variational approach to nonlinear evolution
problems which will be subject of Chapter 5.

1.1 Interface evolution problems in fluid mechanics and
in material sciences

An interface is a surface separating two spatial regions occupied by two different physical
states, or often referred to as phases. In this sense, interfaces appear in the modeling of various
physical phenomena, ranging from two-phase fluid flows, grain coarsening, image processing
to crystal growth, tumor growth, and biological membranes.

The main focus of this thesis is the study of the following two models for interface evolution
in fluid mechanics and in material sciences: the two-phase incompressible Navier–Stokes flow
with surface tension and the multiphase mean curvature flow.

Two-phase incompressible Navier–Stokes flow with surface tension

Consider the motion of oil droplets in water. This is a standard example of flow of two
immiscible, incompressible and viscous fluids with surface tension effects, which can be
modeled as follows. The interface between the two fluids is transported along the fluid flow
due to the immiscibility of the two fluids. The motion of each fluid is determined by the
incompressible Navier-Stokes equation. The interface exerts a surface tension force on the
fluids proportional to the mean curvature of the interface.

In terms of a mathematical formulation, consider a domain Ω ⊆ Rd and a time interval
[0, T ) ⊂ R. The velocity fields of the two fluids coincide on the interface due to a no-slip
boundary condition at the interface I(t), t ∈ [0, T ) ⊂ R, hence we consider a single velocity
vector field v : Ω × [0, T ) → Rd. Then, given χ : Ω × [0, T ) → {0, 1} as the indicator function

1



1. Introduction

Ω

χ = 1

χ = 0

Figure 1.1: Two-phase fluid in Ω ⊆ R2.

of the volume occupied by the one of the fluids so that I = ∂{χ = 1}, the above two-phase
fluid system corresponds to the following PDEs formulation

∂tχ+ (v · ∇)χ = 0, (1.1)
∂t(ρ(χ)v) + ∇ · (ρ(χ)v × v) = −∇p+ ∇ ·

(︂
µ(χ)(∇v + ∇vT)

)︂
+ σH |∇χ|, (1.2)

∇ · v = 0, (1.3)

where ρ = ρ(χ) and µ = µ(χ) denote the density and the viscosity functions of the two-phase
fluid, p is the pressure, σ is the surface tension, H is the mean curvature vector of the interface
I, and |∇χ| the surface measure of I. In particular, denoting by nI the normal to I, the right
hand side of (1.2) encodes the Young–Laplace law along the interface:

[[TnI ]] = σH along I, (1.4)

where T := µ(χ)(∇v+∇vT) − p Id is the viscous stress tensor and [[·]] denotes the jump
across I.
Additionally, in case of Ω ⊂ Rd bounded, the system (1.1)-(1.3) is endowed with boundary
conditions, for instance the complete slip boundary conditions:

v(·, t) · n∂Ω = 0 along ∂Ω, (1.5)(︂
n∂Ω · µ(χ)(∇v + ∇vT)(·, t)τ∂Ω

)︂
= 0 along ∂Ω, (1.6)

where n∂Ω and τ∂Ω denote the inner pointing normal and the tangent to ∂Ω, respectively.
These boundary conditions not only prescribe that the fluid cannot exit from the domain
and that it can move only tangentially to its boundary, but they also exclude any external
contribution to the viscous stress and any friction effect with the boundary.
The energy functional for the above two-phase fluid system is given by the sum of the kinetic
energy and the interface energy, namely

E(χ, v) =
ˆ
Rd

1
2ρ(χ)|v|2 dx+ σHd−1(I),

and the associated energy dissipation inequality reads as

d
dtE(χ, v) +

ˆ
Rd

1
2µ(χ)|∇v + ∇vT|2 dx ≤ 0.

2



1.1. Interface evolution problems in fluid mechanics and in material sciences

I1,2

I2,3

I3,1

I4,2

Figure 1.2: Multiphase system in which each color corresponds to a different phase (e.g.,
orientation of the lattice for a polycrystal).

Multiphase mean curvature flow

Consider a polycrystal, which is a solid material consisting of crystals with different orientations.
A grain boundary is an interface where crystals of different orientations meet. Each orientation
represents a different phase of the polycrystal as a multiphase system (cf. Figure 1.2).
A model for the evolution in time of grain boundaries in polycristals undergoing heat treatment
was first introduced by Mullins in [96], and it can be mathematically formulated by means of
the mean curvature flow equation

Vi,j = σi,jHi,j along Ii,j, (1.7)

where Vi,j denotes the normal velocity, σi,j is the surface tension, and Hi,j is the mean curvature
of the interface Ii,j separating the polycrystal regions i and j with different crystallographic
orientations. The above equation has to be complemented with an equilibrium condition
holding at the intersection of three grain boundaries, i.e. at a triple junction, which is known
as Herring angle condition and reads as∑︂

i,j

σi,jni,j = 0, (1.8)

where ni,j denotes the unit normal pointing from phase j into phase i. Note that, in case of
equal surface tensions, (1.8) corresponds to a 120◦ angle condition between the normals.
Multiphase mean curvature flow has a gradient-flow structure. In particular, the evolution by
mean curvature can be derived as the L2-gradient flow of the interface area functional

E(I) = 1
2
∑︂
i,j

σi,jHd−1(Ii,j), (1.9)

3



1. Introduction

which is subject to a dissipation of the form

d
dtE(I) = −1

2
∑︂
i,j

σi,j

ˆ
Ii,j

Vi,jHi,j dHd−1 = −1
2
∑︂
i,j

σi,j

ˆ
Ii,j

|Vi,j|2 dHd−1. (1.10)

1.1.1 Solution concepts for curvature driven evolving interfaces
The main challenge in the mathematical description of curvature driven evolving sharp
interface consists in the occurance of topology changes in finite time. In the literature
various approaches are available for the mathematical analysis of sharp interfaces.

Classical ways for the representation of sharp interfaces range from parametrizations to measure
theoretic approaches. Parametric approaches provide a detailed description of the evolution of
sharp interfaces in time, however these typically lead to nonlinear partial differential equations
whose study reveals to be challenging, in particular in case of topology changes. Weaker
approaches involving measure theoretic methods are thus preferable in order to allow topology
changes.

Weakening the concept of solution however may lead to abundance of solutions, also including
unphysical non-uniqueness (e.g., a sudden vanishing of the interface at an arbitrary time),
even in the absence of topology changes. Therefore, uniqueness may fail in the class of
weak solutions. On the other hand, with the exception of evolution equations subject to a
comparison principle (e.g., two-phase mean curvature flow), uniqueness properties of weak
solutions have been mostly unexplored. In the framework of curvature driven interface evolution
problems not satisfying a comparison principle, one may establish a conditional result in the
form of a weak-strong uniqueness principle, stating:
Prior to the first topology change, weak solutions are unique in the class of strong solutions.
In other words, the non-uniqueness of weak solutions can arise only as a consequence of
topology changes, such as the pinch-off in liquid drops or the collapse of grain boundaries in a
polycrystals.

Classical strong solutions and singularity formation. In the classical setting, the evolving
sharp interfaces are described either by means of standard parametrization, or by means of an
height function over a (d− 1)-dimensional closed reference hypersurface U .

In the framework of the two-phase viscous fluid flow (1.1)-(1.3), short-time existence of
strong solutions in the Lp-setting was established by Köhne, Prüss, and Wilke in [70], and
by Wilke in [127]. In these works, the evolving interface γ : U × [0, T ] → Rd is represented
in terms of a graph of the the height function h : U × [0, T ] → Rd over the initial interface
γ0 : U → Rd, namely γ(s, t) = γ0(s) + h(s, t)nγ0(s), where nγ0 denotes the normal vector
field to γ0, whereas the evolving domain of one of the fluids is represented in terms of the
associated Hanzawa transform (cf. [101]).

Short-time existence for the evolution by mean curvature flow of a smooth hypersurface was
first established first by Gage and Hamilton [51], then by Huisken and Polden [61], representing
the evolving hypersurfaces as graphs over the initial one in a tubular neighborhood of the
latter (cf. [84]).

In the context of planar multiphase mean curvature flow, we refer to the work of Mantegazza,
Novaga, Pluda and Schulze [85] for the analytical study of the evolution and of the singularity
formation resulting from a topology change. Local-in-time existence and uniqueness in the

4



1.1. Interface evolution problems in fluid mechanics and in material sciences

γ1

γ2

γ3

Figure 1.3: Triple junction satisfying 120◦ angle condition.

Figure 1.4: Collision of two standard triods resulting in a standard cross with angles of
60◦/120◦.

case of three curves γi : [0, 1] × [0, T ] → D ⊂ R2, i = 1, 2, 3, meeting at a single triple
junction with fixed end-points was proved first by Bronsard and Reitich in [24], then revised
by Mantegazza, Novaga and Tortorelli in [86] (see Figure 1.3). In their works, the evolution
equation (1.7) for the curves γi reads as

∂tγi = ∂ssγi
|∂sγi|2

for a specific choice of the tangential velocity (in order to allow the motion of the triple
junction without affecting the motion of the curves). The authors of [85] extended the result
of [86] to a network made of regular triple junctions (i.e. satisfying the Herring angle condition
(1.8)). In case of non-regular initial networks (that is, with multi-points of order greater than
3 and/or non-regular 3-points), e.g., networks resulting from a collision of two triple junctions
(cf. Figure 1.4), we refer to the short-time existence result of Ilmanen, Neves and Schulze
[64]. In particular, their result combined together with a previous analysis of the singularities
provides a restarting (and/or continuation) result for the curvature flow past a singularity
formation.
As conjectured by Ilmanen on the basis of numerical simulations (cf. [85]), some self-similarly
shrinking networks (i.e., shrinkers) are dynamically stable, meaning that perturbing the flow,
the blow-up limit network remains the same. As a consequence, the generic singularities of
the curvature flow of a network are conjectured to be (locally) asymptotically described by
one of the these shrinkers. If the dynamically stable shrinker is a line or a standard triod (i.e.
a 120◦ triple junction), there is no singularity, thus one may consider as dynamically stable
singularities the following: the unit circle, the standard cross, the Brakke spoon, the lens, and
the three-ray star (see Figures 1.4-1.5).
In the framework of classical strong solutions for bubbles clusters moving by mean curvature
in higher space dimension, less is available in the literature. Local-in-time existence and
uniqueness for general double bubble clusters was proved by Depner, Garcke and Kohsaka [37].

5



1. Introduction

Figure 1.5: Dynamically stable shrinkers: the circle, the Brakke spoon, the lens, the three-ray
star.

Level-set formulation and viscosity solutions. The notion of viscosity solutions for
two-phase mean curvature flow relies on the level set approach of Osher and Sethian [99].
Instead of an evolving interface I(t), we consider a function u having I(0) as zero level set at
the initial time t = 0 and evolving according to the degenerate parabolic equation

∂tu− ∇ ·
(︄

∇u
|∇u|

)︄
|∇u| = 0.

Then, the viscosity solution I(t) is defined as the zero level set of u at time t.
The construction of a global-in-time unique viscosity solution can be found in the works by
Chen, Giga and Goto [30], and Evans and Spruck [41]. These results are established due to the
availability of a comparison principle, which reads as two disjoint surfaces stay disjoint during
the evolution in the context of viscosity solution for two-phase mean curvature flow. The
absence of a comparison principle for multiphase mean curvature flow prevents the applicability
of these concepts in the multiphase case.
Despite the well-posedness and uniqueness of viscosity solutions, I(t) may develop a non-trivial
interior and thus fails to describe an interface in form of a hypersurface. This phenomenon,
which is referred to as the fattening of the level sets in the literature, can be explained in
terms of non-uniqueness of the evolution (cf. [118]). Nevertheless, fattening is known to not
occur prior to the first topology change.

BV formulation of energy dissipating solutions. A distributional formulation of multi-
phase mean curvature flow in the setting of finite perimeter sets and BV functions was used
in the work of Luckhaus and Sturzenhecker [83], later by Laux and Otto [73], and by Laux
and Simon [74]. Their formulation of multiphase mean curvature flow relies, first on a set of
BV phase indicator functions χi, then on the existence of velocity vector fields Vi such the
following trasport equations are satisfied in a distributional sense

∂tχi + (Vi · ∇)χi = 0.

A weak formulation of the mean curvature equation (1.7) is given by

∑︂
i,j

σi,j

ˆ T

0

ˆ
Ii,j

Vi · φ dHd−1 dt = −
∑︂
i,j

σi,j

ˆ T

0

ˆ
Ii,j

(Id −ni,j ⊗ ni,j) : ∇φ dHd−1 dt,

(1.11)

where φ is a smooth vectorial test function. Indeed, we note that −
´
Ii,j

(Id −ni,j ⊗ ni,j) :
∇φ dHd−1 =

´
Ii,j
Hi,jni,j · φ dHd−1 for smooth surfaces Ii,j without boundary. The energy

dissipation inequality 1.10 is imposed by defining the interface normal velocities Vi,j as
restrictions of Vi to Ii,j . Conditional global-in-time existence results for BV solutions to

6



1.1. Interface evolution problems in fluid mechanics and in material sciences

Figure 1.6: Evolution of a circular interface by mean curvature flow: The interface shrinks
to a point in finite time. In the framework of Brakke solutions to mean curvature flow, the
interface may suddenly disappear at any time.

multiphase mean curvature flow were established by Luckhaus and Sturzenhecker [83], by
Laux and Otto [73], and by Laux and Simon [74]. Furthermore, the BV formulation allows
the occurrence of topology changes, and a weak-strong uniqueness result for BV solutions to
multiphase mean curvature was established prior to the first topology change [46].

Measure-valued varifold solutions. In the framework of geometric measure theory, in-
terfaces at any time t are modeled by integral (oriented) varifolds Vt, namely non-negative
measures on Rd ×G(d, d− 1) (Rd × Sd−1), where G(d, d− 1) (Sd−1) denotes the space of
all (d − 1)-dimensional linear subspaces of Rd (the unit (d − 1)-sphere). In particular, the
curvature term on the right hand side of (1.11) is espressed by means of

−
ˆ
Rd×G(d,d−1)

PQ : ∇φ dVt

where PQ denotes the orthogonal projection onto Q ∈ G(d, d − 1) and corresponds to
Id −s⊗ s, s ∈ Sd−1, in case of oriented varifolds Vt.

In the context of two-phase incompressible Navier-Stokes flow with surface tension, Abels
introduced the associated notion of varifold solutions in order to model possible oscillation
of the interface on an infinitesimal scale and he proved their global-in-time existence [1].
Moreover, varifold solutions in the sense of Abels satisfying a corresponding form of the energy
dissipation inequality (1.10) are unique in a suitable class of strong solutions [45].

A notion of varifold solution to mean curvature flow was given by Brakke in his pioneering
work [21], in which he provided a global-in-time existence result. Brakke’s notion of solutions
consists of a localized version of the energy dissipation inequality (1.10), which is formulated
in terms of an evolving integral varifold with locally bounded first variation. As a consequence,
a sudden and arbitrary loss of surface measure at any time is admissible. In order words, in
the context of Brakke solutions to mean curvature flow, the interface may suddenly disappear
at any time (see Figure 1.6). In particular, Brakke solutions fail to be unique, even prior to
the first topology change in the classical solution.

Kim and Tonegawa [68], and Stuvard and Tonegawa [122] introduced a notion of varifold
solutions that combines the concept of Brakke solutions with an evolution equation for the
different phases, proving global-in-time existence. By imposing an evolution equation for the
phases, their concept of varifold solutions prevents the sudden vanishing of the interface,
hence constitutes a significant improvement to Brakke’s notion of solutions. Furthermore,
being a natural generalization of the concept of BV solutions to varifolds, a corresponding
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1. Introduction

uε ≈ 1 uε ≈ −1ε

Figure 1.7: Regions in which uε ≈ ±1 are separated by a diffuse interfacial layer of thickness
proportional to ε.

weak-strong uniqueness result was established prior to the first topology change [46]. More
recently, another notion of varifold solutions satisfying a global energy-dissipation inequality in
the sense of De Giorgi [53] was introduced by Laux and Hensel [56].

1.1.2 Phase-field models
An alternative approach to describe the evolution of interfaces is that of phase-field models,
which replace the sharp interfaces (hypersurfaces) with thin diffused interfacial regions. In
other words, instead of working with a characteristic function indicating the region occupied
by one of the phases, phase-field descriptions are formulated in terms of a smooth function,
usually referred to in the literature as order parameter. In particular, the order parameter
takes values close to given values (e.g. ±1), and rapidly changes between these two values
in a diffuse transition layer of width of order ε < 1 (see Figure 1.7). As a main advantage,
phase-field models allow to describe the evolution of interfaces beyond topology changes and
the formation geometric singularities.

The Allen-Cahn phase-field model

The Allen-Cahn model was introduced to the describe the dynamics of antiphase boundaries
[13], namely the process of phase separation resulting from the ordering of atoms within unit
cells of a lattice. Variants of the model have been introduced in the literature to describe
physical processes of phase separation in multi-phase systems. The Allen-Cahn equation reads
as

∂tuε = ∆uε − 1
ε2∂uW (uε), (1.12)

where uε : Rd × [0, T ] → RN−1 is an order parameter, and W : RN−1 → [0,+∞) is a N -well
potential vanishing in α1, ..., αN ∈ RN−1 (see Figure 1.8 for N = 2 and N = 3). The set of
zeros {α1, ..., αN} represent the pure phase states, which can mix together in diffuse transition
layers of order ε > 0 where uε takes value along the path connecting them.

The Allen-Cahn equation is the L2-gradient flow (accellerated by the factor 1/ε) of the
Ginzburg-Landau energy

Eε(uε) =
ˆ
Rd

ε

2 |∇uε|2 + 1
ε
W (uε) dx, (1.13)

8
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u

W (u)

−1 +1
(a) Double well potential W (u) = (u2−1)2

with zeros in ±1
(b) Triple well potential with zeros in
α1, α2, α3 ∈ R2

Figure 1.8: N -well potentials

and formally subject to the energy dissipation inequality

d
dtEε(uε) = −

ˆ
Rd

ε|∂tuε|2 dx.

Sharp interface limit of the Allen-Cahn model

Phase-field models can be interpreted as an approximation of sharp interface models, and
thus have been widely used for numerical computations. By letting the width of the diffuse
transition layers to vanish, i.e. ε → 0, one expects to recover the underlying sharp interface
dynamics. For this reason, the limit ε → 0 is referred to in the literature as sharp interface
limit.

In its sharp interface limit, the Allen-Cahn equation (1.12) describes the evolution of interfaces
by mean curvature flow (1.7). Consider for simplicity the two-phase case (N = 2), the
level-sets of uε are roughly parallel to the interface I and ∇uε points in the direction of the
normal n to I. Then, since div(∇uε) = ∆uε and divI(n) = H, one can already notice the
analogies between (1.12) and (1.7), at least at a formal level.

At the level of the energy functionals, the analytical study of the convergence of the Ginzburg-
Landau energy (1.13) towards the interface area functional (1.9) was initiated by Modica
and Mortola [95]. In the two-phase case, the corresponding gamma-convergence result was
established by Modica [94] and Sternberg [121]. Luckhaus and Modica [82] proved the
convergence of the first variation of the energy (1.13) to mean curvature, namely the first
variation of the interface area functional, again in the two-phase setting. In the framework of
vectorial uε, a gamma-convergence result for the general multiphase case was established by
Baldo [15].

The rigorous analysis of the behavior of solutions to the Allen-Cahn equation (1.12) in its sharp
interface limit ε → 0 has for long been available only for the scalar Allen-Cahn equation with
two-well potential W , namely only for N = 2. Convergence for a smooth evolution was proved
independently by de Mottoni and Schatzman [36] and by Chen [29] by means of rigorous
asymptotic expansions. More recently, Fischer, Laux and Simon gave a short alternative proof
for quantitative convergence towards a smooth solution to mean curvature flow. However,
both the arguments hold only in the two-phase setting, as they do not consider the occurrence
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1. Introduction

of branching singularities (i.e. triple junctions) in the limiting motion by multiphase mean
curvature. More generally, convergence results for classical strong solutions towards multiphase
mean curvature flow beyond the formation of dynamically stable singularities have not been
available in the literature so far. To overcome the problems arising from the formation of
singularities in the multiphase setting, convergence of the Allen-Cahn equation (1.12) to its
sharp interface limit was established in the framework of two-phase Brakke solution by Ilmanen
[62], and in that of viscosity solutions by Evans, Soner, and Souganidis [40].
To the best of our knowledge, only a formal expansion analysis for the convergence to the
smooth evolution of a triple junction was carried out by Bronsard and Reitich [24]. In the
multiphase setting, so far the only rigorous convergence result past singularities has been the
conditional result proved by Laux and Simon [74] in the setting of BV solutions to multiphase
mean curvature flow. However, their result is conditional, in the sense that they assumed that
the time integral of the energy (1.13) converges to the time integral of (1.9) as ε → 0.

1.1.3 The relative energy method
The relative energy (or entropy) method originates in the works of Dafermos [32] and DiPerna
[38] on systems of conservation laws and it has been widely exploited in the context of fluid
dynamics (cf. [126]). Recently, relative energy techiniques have been a promising tool to
establish results such as

• weak-strong uniqueness principles for sharp interface evolution problems for the
two-phase incompressible Navier-Stokes flow [45] and for multiphase mean curvature
flow [48];

• quantitative convergence of phase-field models to their sharp interface limit
for the scalar Allen-Cahn equation towards the evolution by mean curvature flow [48].

A relative energy is a nonlinear functional that measures the error between two solutions, which
we denote by u and v, with v being the stronger/sharper/more regular one. In particular,
for physical systems with a strictly convex energy (or entropy) functional E[·] subject to
dissipation, the relative energy is obtained by subtracting the first order approximation around
v to E[·], namely by

E[u|v] := E[u] −DE[v](u− v) − E[v].

In order to compute the time evolution of E[u|v], one needs the energy (or entropy) dissipation
inequality for u, and the weak formulation of the evolution equation for u tested by some
nonlinear functional of v. Then one may exploit the properties of E[u|v] in order to deduce a
relative energy inequality of the form

d

dt
E[u|v] ≤ CE[u|v],

for some constant C = C(T, v) > 0. At last, a Gronwall-type argument allows to obtain a
stability estimate

E[u|v](t) ≤ eCtE[u|v](0), for any t ∈ [0, T ], (1.14)

and thus to conclude about either weak-strong uniqueness properties or convergence rates for
well-prepared initial data.

10



1.1. Interface evolution problems in fluid mechanics and in material sciences

Depending on the problem under study, the relative energy may consist of several terms, each
controlling different quantities. Below we introduce the relevant ones in the framework of the
two-phase incompressible Navier-Stokes flow and of mean curvature flow (as well as of its
phase-field Allen-Cahn approximation).

Velocity error. In the framework of the incompressible Navier-Stokes flow of two fluids with
same viscosities, the relative energy functional has a term controlling the error between the
velocities u and v in the L2-norm

Evel[u|v] =
ˆ
Rd

1
2ρ(χu)|u− v|2 dx, (1.15)

where ρ denotes the density function. In the case of different viscosities of the two fluids, we
refer the reader to [45] for a detailed discussion.

Interface error. From the interface area functional, one can deduce a contribution Eint[Iu|Iv]
in the relative entropy providing control the interface error between a measure-theoretic interface
Iu = ∂∗{χu = 1} and a strong interface Iv = ∂{χv = 1}. Formally, the ansatz for Eint[Iu|Iv]
is of the form

Eint[Iu|Iv] = σ

ˆ
Rd

1 − ξ · nu d|∇χu|, (1.16)

where σ is the surface tension, nu is the measure-theoretic unit normal along Iu, whereas ξ is
a smooth extension of the unit normal vector field to Iv in its space-time neighborhood. In
particular, ξ coincides along Iv with its unit normal vector field. Additionally, away from Iv,
the length of ξ decreases quadratically in the distance to Iv. Note that Eint[Iu|Iv] controls
the squared error of the interface normals

Eint[Iu|Iv] ≥ σ

2

ˆ
Rd

|nu − ξ|2 d|∇χu|.

Furthermore, Eint[Iu|Iv] controls the total area of the part of the interface Iu which is not
locally a graph over Iv.
In the framework of oriented varifold solutions, the ansatz for interfacial contribution in the
relative energy functional reads as

Eint[Iu, V |Iv] = σ

ˆ
Rd×Sd−1

1 − ξ · s dVt ≥ σ

2

ˆ
Rd×Sd−1

|s− ξ|2 dVt. (1.17)

Then, having a compatibility condition of the formˆ
Rd×Sd−1

φs dVt =
ˆ
Rd

φ d∇χu (1.18)

for every smooth test function φ with compact support, one can define the Radon–Nikodym
derivative

θt := d|∇χu(t)|
d|Vt|Sd−1

.

The quantity 1/θt corresponds to the multiplicity of the varifold Vt. In particular, one can
rewrite Eint[Iu, V |Iv] as

Eint[Iu, V |Iv] = σ

ˆ
Rd

1 − ξ · nu d|∇χu| + σ

ˆ
Rd

1 − θt d|Vt|Sd−1 ,

11



1. Introduction

where the last term controls the multiplicity error of the varifold. In turn, one can also obtain
a control of the squared error in the normal of the varifold

´
Rd×Sd−1 |s− nu|2 dVt.

In the context of the convergence of phase-field approximations, formally, one has to re-
place Iu with the diffuse interfacial region, in which the order parameter uε takes val-
ues between two given values, for example ±1. Being its diffuse interface approximation
[94], the Ginzburg-Landau energy Eε(uε) from (1.13) plays the role of the interface area´
Rd 1 d|∇χu|. On the other hand, the phase-field approximation of nud|∇χu| is given by

∇ψ(uε) dx = ∇uε

|∇uε| |∇ψ(uε)| dx with ψ(uε) =
´ uε

0

√︂
2W (s) ds from the Modica-Mortola trick

for a two-well potential W . As a result, the relative energy ansatz for the proof of the
convergence of the scalar Allen-Cahn equation reads as [48]

Eint[uε|Iv] =
ˆ
Rd

ε

2 |∇uε|2 + 1
ε
W (uε) − ξ · ∇ψ(uε) dx. (1.19)

In particular, by adding a zero, one can rewrite Eint[uε|Iv] as

Eint[uε|Iv] =
ˆ
Rd

ε

2 |∇uε|2 + 1
ε
W (uε) − |∇ψ(uε)| dx+

ˆ
Rd

(︃
1 − ξ · ∇uε

|∇uε|

)︃
|∇ψ(uε)| dx,

thus obtaining the control of the local lack of equipartition of energy between the terms
ε
2 |∇uε|2 and 1

ε
W (uε)

Eint[uε|Iv] ≥
ˆ
Rd

1
2

⃓⃓⃓⃓√
ε|∇uε| − 1√

ε

√︂
2W (uε)

⃓⃓⃓⃓2
dx,

as well as of the error between the normals

Eint[uε|Iv] ≥
ˆ
Rd

1
2

⃓⃓⃓⃓
ξ − ∇uε

|∇uε|

⃓⃓⃓⃓2
|∇ψ(uε)| dx.

Weighted volume error. In the limit of vanishing length of the weak interface Iu, the
interfacial contribution Eint[Iu|Iv] in the relative energy lacks of coercivity. For this reason,
one introduces in the relative energy functional an additional term Evol[χu|χv] which controls
the error between the volumes with weight ϑ. In particular, ϑ behaves approximately like a
sign distance to Iv in the proximity of Iv, and Evol[χu|χv] is of the form

Evol[χu|χv] =
ˆ
Rd

(χu − χv)ϑ dx, (1.20)

which is nonnegative for ϑ > 0 in {χu = 1} and ϑ < 0 in {χu = 0}.

1.1.4 Contributions of this thesis
The main interest of this thesis resides in the application of the relative energy techniques in
order to establish

• weak-strong stability for the planar two-phase incompressible Navier-Stokes flow with 90
degree contact angle condition (cf. Chapter 2);

• quantitative convergence of the vectorial Allen-Cahn equation towards multiphase mean
curvature flow (cf. Chapter 3);

12



1.1. Interface evolution problems in fluid mechanics and in material sciences

• weak-strong stability for planar multiphase mean curvature flow beyond a circular
topology change (cf. Chapter 4).

These results are quantitative, as are derived as a consequence of an associated stability
estimate of the form of (1.14). In particular, qualitative weak-strong uniqueness principles
and qualitative convergence can be deduced as a consequence.

A weak-strong uniqueness principle for the two-phase incompressible Navier-Stokes
flow with 90 degree contact angle condition

In a recent work [45], a weak-strong uniqueness principle for varifold solutions (in the sense of
Abels [1]) was established for the flow of two immiscible, viscous and incompressible fluids
with surface tension. In Chapter 2, in the planar case and for matched shear viscosities, we
extend the weak-strong uniqueness result of [45] to the setting of a bounded domain Ω ⊂ R2,
imposing a 90◦ contact angle condition for the interface Iv if it intersects with the boundary
of the domain ∂Ω at a contact point c(t), namely

n∂Ω(c(t)) · nIv(c(t), t) = 0 for any t ∈ [0, T ],

where n∂Ω and nIv denote the normal to ∂Ω and Iv, respectively. This result has been obtained
in collaboration with Sebastian Hensel [58] and reads as
Energy dissipating varifold solutions (χu, u, V ) in the sense of Abels [1] to the incompressible
two-phase Navier-Stokes flow for two fluids (1.1)-(1.3) with 90◦ contact angle and same
viscosities satisfy a weak-strong stability estimate. In particular, as long as a strong solution
(χv, v) exists, any energy dissipating varifold solution starting from the same initial data has
to coincide with the unique strong solution.
We establish this result by exploiting the relative energy method, namely by studying the
time evolution of a relative energy functional E[χu, u, V |χv, v] of the form devised in [45],
which consists of the sum of the terms (1.15) and (1.20) with integrals on a bounded domain
Ω ⊂ R2, and of (1.17) with its integral on the closure of Ω, thus encoding the 90◦ contact
angle condition. As a result, we obtain a weak-strong stability estimate of the form of

E[χu, u, V |χv, v](t) ≤ CeCtE[χu, u, V |χv, v](t), for any t ∈ [0, T ],

with C = C(T, χv, v) > 0.
Our proof requires a nontrivial further development of ideas from [45] in order to incorporate
the contact angle condition. The main challenges of our work are twofold. First, we need
to introduce a varifold solution concept in the sense of Abels [1] in the setting of bounded
domains with 90◦ contact angle condition at any moving contact point c(t). Indeed, the work
of Abels [1] only deals with the full-space setting in the presence of surface tension. Second,
we contruct a suitable boundary adapted extension ξ of the normal vector field to the strong
solution interface Iv, i.e. nIv , in a space-time neighborhood of any moving contact point c(t)
along ∂Ω. In particular, our smooth boundary adapted extension ξ of nIv is subject to the
boundary condition

ξ · n∂Ω = 0 on ∂Ω × [0, T ]. (1.21)

Including the boundary condition (1.21) in the vicinity of a space-time trajectory of a moving
contact point c(t) requires a perturbation of the rather trivial standard bulk construction, thus
additional nontrivial technical work.
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In the spirit of the two-step strategy of [46], we additionally establish a conditional weak-strong
uniqueness result in the three dimensional setting: The missing ingredient is a contruction for
the boundary adapted extension ξ in the vicinity of any moving contact line Iv ∩ ∂Ω satisfying
a 90◦ contact angle condition.

At last, we observe that our result holds in the regime of the same shear viscosity for the two
fluids. However, for our construction for the boundary adapted extension ξ we do not rely on
this assumption. Hence, we expect that one could generalize our result in case of different
viscosities of the two fluids by adapting the kinetic energy contribution of the relative energy
(1.15) to this regime, thus implementing the highly technical technique developed in [45].

Quantitative convergence of the vectorial Allen-Cahn equation towards multiphase
mean curvature flow

The rigorous analysis of the behavior of solutions to the Allen-Cahn equation (1.12) in the
limit of vanishing interface width ε → 0 has long been available only for the scalar Allen-Cahn
equation with two-well potential W [29] [36] [48] [40] [62]. As for the vectorial Allen-Cahn
equation (1.12) with a potential W with N ≥ 3 distinct minima, the only previous results
on the sharp interface limit have been a formal expansion analysis [24] and a conditional
convergence result [74]. To the best of our knowledge, not even an unconditional proof of
qualitative convergence for well-prepared initial data has been available so far. One of the
main challenges has been the occurance of branching singularities (i.e. triple junctions) in the
conjectured limit of multiphase mean curvature flow.

In Chapter 3, we give rigorous proof for the sharp interface limit of the vectorial Allen-Cahn
equation (1.12) in a multiphase setting by means of the relative energy approach. This is joint
work with Julian Fischer [49] and our main result states

As long as a strong solution to multiphase mean curvature flow exists, solutions to the vectorial
Allen-Cahn equation for a suitable class of potentials and with well-prepared initial data
converge towards multiphase mean curvature flow in the limit of vanishing interface width
parameter ε → 0.

We introduce a notion of relative energy which generalizes (1.19) to the multiphase setting,
and thus relies on the concept of gradient-flow calibration ξi for branching singularities in
multiphase mean curvature flow (cf. [46] for triple junctions in R2, [57] for double-bubbles
in R3). In other words, ξi − ξj can be interpreted as a suitable extension of the unit normal
vector field of the smooth interfaces between phases i and j. Having this ingredient at our
disposal, our relative energy ansatz is

E[uε|ξ] =
ˆ
Rd

ε

2 |∇uε|2 + 1
ε
W (uε) +

N∑︂
i=1

ξi · ∇ψi(uε) dx, (1.22)

where ψi : RN−1 → [0, 1] are suitable phase indicator functions of class C1,1 such that
ψi(αj) = δi,j. The functions ψj − ψi play a role that is somewhat similar to that of
ψ(u) =

´ u
0

√︂
2W (s) ds in the Modica-Mortola trick for a two-well potential W .

The properties of the gradient-flow calibration ξi and the assumptions on the functions ψi
ensure the coercivity properties of E[uε|ξ] necessary to prove the stability estimate

E[uε|ξ](t) ≤ CeCtE[uε|ξ](0), for any t ∈ [0, T ],
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where C = C(T, χ̄i) > 0 and χ̄i are the phase indicator functions from the strong solution to
multiphase mean curvature flow. Then, for suitable initial data uε(·, 0) satisfying E[uε|ξ](0) ≤
C(χ̄i(0))ε, one can deduce

||ψi(uε(·, t)) − χ̄i(·, t)||L1(Rd) ≤ Cε1/2, for any t ∈ [0, T ],

establishing O(ε1/2) as a rate of convergence.
Our result holds for a suitable class of multi-well potentials W , e.g. the triple wells one in 1.8.
Indeed, a challenging task has been the construction of the functions ψi, which relies on the
properties of W . We expect that our strategy can be generalised in order to work also for a
larger class of multi-well potentials, making our result even stronger. However, this task is not
trivial at all, as it requires additional technical work in order to compensate the relaxation of
the assumptions on W , thus we leave it for future work.

Weak-strong stability for planar multiphase mean curvature flow beyond a circular
topology change

In a recent work [46], Fischer, Hensel, Laux and Simon have established a weak-strong
uniqueness principle for BV solutions to planar multi-phase mean curvature flow. Their result
was proved by means of the relative energy technique, obtaining a weak-strong stability
estimate holding prior to the first topology change.
In Chapter 4, following the relative energy approach of [46], we prove a weak-strong stability
estimate holding up past the formation of the simplest dynamically stable singularity [85], a
shrinking circle. This implies a weak-strong uniqueness principle for weak BV solutions to
planar multiphase mean curvature flow beyond circular topology changes. This result has been
obtained in collaboration with Julian Fischer, Sebastian Hensel and Maximilian Moser and
reads as
Energy dissipating BV solutions in the sense of Laux and Otto [73] resp. Laux and Simon [74]
to planar multiphase mean curvature flow (1.7) satisfy a weak-strong stability estimate past a
circular topology change. In particular, any energy dissipating BV solution starting from the
same initial data has to coincide with the unique two-phase circular strong solution beyond
the singular time at which it shrinks to a point.
More precisely, in our statement, a two-phase circular strong solution is any smooth, closed
and simple curve in the plane which is close to a circle and evolves by mean curvature flow (for
an exact circle, see Figure 1.9). Our notion of strong solution is justified by the works of Gage
and Hamilton [51] and of Grayson [55], stating that: Given some smooth, bounded, open
and simply connected initial set A0 ⊂ R2 with boundary ∂A0 evolving in time into ∂A(t) by
mean curvature flow, then ∂A(t) becomes circular in the process, in the sense that ∂A(t)
gets asymptotically close to a circle of radius r(t) =

√︂
2(Text − t), and it shrinks to a point at

the extinction time Text = vol(A0)
π

.
The previous weak-strong stability result of [46] is limited to time horizons before the first
topology change of the strong solution. The reason is that the time-dependent constant C(t)
in the associated relative energy inequality

d
dtE[χ|χ̄](t) ≤ C(t)E[χ|χ̄](t), for any t ∈ [0, Text],

is non-integrable, in particular C(t) ∼ (Text − t)−1. This leads to the study of the stability of
the leading order non-integrable tems near the singularity.
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Figure 1.9: Evolution of a circle by mean curvature flow, i.e., r′(t) = − 1
r(t) for any t ∈ (0, Text),

r(0) = r0 and Text = 1
2r

2
0.

We overcome the issue of the blowing-up contant C(t) ∼ (Text − t)−1 at the singular time
Text by developing a weak-strong stability theory for circular topology change up to dynamic
space-time shift (z(t), T (t)) ∈ R2 × R. The role of the space-time shift is that of dynamically
adapting the strong solution to the weak BV solution so that the leading-order non-integrable
contributions in the relative energy inequality are compensated. As a result, denoting by
χ̄z,T = z + χ̄(T (·)) the space-time shifted strong solutuion, we obtain a Gronwall inequality
of the form

d
dtE[χ|χ̄z,T ](t) ≤ − α

r2(T (t))E[χ|χ̄z,T ](t) for α ∈ (0, 5),

whence one can deduce the weak-strong stability estimate

E[χ|χ̄z,T ](t) ≤
(︃
r(T (t))
r0

)︃α
E[χ|χ̄z,T ](0),

for any time t ∈ (0, tχ), where tχ = sup{t : T (t) < Text}.

In order to prove weak-strong stability for circular topology change up to dynamic space-time
shift, we work in two different regimes for the weak BV solution. The non-regular regime
correspond to the times t ∈ (0, tχ) at which the dissipation term (cf. (1.10)) satisfies

1
2
∑︂
i,j

σi,j

ˆ
Ii,j

|Vi,j|2 dHd−1 ≥ Λ
r(T (t)) for some large Λ > 0,

hence the dynamic space-time shift is not strictly needed in order to compensate the non-
integrability of the leading oder terms. On the other hand, the regular regime corresponds
to the times at which the dissipation term is strictly bounded by Λ

r(T (t)) . In particular, in the
regular regime our proof relies on the fact that the weak BV solution reduces to a graph over
the strong solution at regular times.

At last, we note that we expect our method to have further applications to other types of
dynamically stable shrinkers, as well as to prove quantitative convergence of diffuse interface
(Allen-Cahn) approximations for planar mean curvature flow beyond the associated singularities.

1.2 A variational approach to nonlinear evolution
problems

We introduce a variational approach to nonlinear evolution problems, whose interest resides in
the possibility of connecting a nonlinear PDE problem with the constrained minimization of a
convex functional. As a result, this approach turns out to be helpful in proving global-in-time
existence of weak solutions as limits of a subsequence of minimizers, solving an elliptic-in-time
regularization of the target problem.
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This idea has to be traced back at least to Ilmanen [63], whose proof of existence and partial
regularity of the Brakke mean curvature flow of varifolds is based on this variational technique.
Remarkably, this approach can be applied to certain classes of hyperbolic problems as well.
Indeed, De Giorgi conjectured this possibility in the setting of semilinear wave equations [54],
which was rigorously proved later in [109, 120].

1.2.1 The Weighted Inertia-Dissipation-Energy approach
A conjecture by De Giorgi [54] states:

Minimizers of suitable convex functionals with initial data as boundary conditions converge,
up to subsequences, to global weak solutions to the semilinear wave equation

∂2
t u− ∆u+ |u|p−2u = 0, p ≥ 2,

as the paramter ε goes to zero.

The functionals Iε(u) are integrals in space-time of a convex Lagrangian exponentially weighted
by a parameter ε > 0, where the initial data of the wave equation serve as boundary conditions.
Their minimizers thus solve the corresponding Euler-Lagrange equation parametrized by ε > 0,
which is an elliptic-in-time regularization of the target problem. As ε tends to zero, the
minimizers converge, up to subsequences, to a solution of the nonlinear wave equation. De
Giorgi’s conjecture was proved by Stefanelli [120] (on bounded time intervals (0, T ) with
T > 0) and by Serra and Tilli [109] (on the original, unbounded time interval (0,∞)).

The variational approach proposed by De Giorgi for the semilinear wave equation can be
extended to some mixed hyperbolic-parabolic equations. In this more general setting, the
approach relies on the minimization of different classes of the Weighted Inertia-Dissipation-
Energy (WIDE) functionals, namely

Iε(u) =
ˆ T

0
e−t/ε

(︃ ˆ
Ω

ε2ρ

2 |∂2
t u|2 dx+ ενψ(∂tu) + ϕ(u)

)︃
dt, ρ, ν > 0, (1.23)

where T ∈ (0,∞], Ω ⊂ Rd is a smooth bounded domain, ε2ρ
2 |∂ttu|2 corresponds to the inertial

term, while the functionals ψ and ϕ represent the dissipative potential and the energy of the
system, respectively. The semilinear wave equation studied in [109, 120] is obtained by the
choices ν = 0 and

ϕ(u) :=
ˆ

Ω
(1
2 |∇u|2 + |u|p) dx, p ≥ 2,

in (1.23). More in general, the hyperbolic setting corresponds to the choice ν = 0, whereas
the parabolic one to ρ = 0. In the parabolic case (ρ = 0), we refer to the method as Weighted
Energy-Dissipation (WED) approach.

Mielke and Stefanelli [93] exploited the WED approach to gradient flows in Hilbert spaces H
for T < ∞, by setting ρ = 0 and by considering general λ-convex energy functionals ϕ on
H in (1.23). In particular, the class of PDE problems considered in [93] includes the scalar
Allen-Cahn equation (1.12) by working with the Hilbert space X = H1

0 (Ω) and with the WED
functionals

Iε(uε) =
ˆ T

0
e−t/ε

(︃ ˆ
Ω

1
2 |∂tuε|2 + 1

2ε |∇uε|2 + 1
ε
W (uε) dx

)︃
dt.
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Doubly nonlinear problems corresponding to the choice ρ = 0 in (1.23) were first investigated
by Akagi and Stefanelli in [7] assuming

ψ(∂tu) =
ˆ

Ω

1
p

|∂tu|p dx, ϕ(u) =
ˆ

Ω

1
q

|∇u|q + F (u) dx, 2 ≤ p < q∗,

where F is as smooth and convex function and q∗ is the Sobolev conjugate of q, then by Akagi,
Melchionna and Stefanelli in [5, 6, 8] considering abstract functionals ψ, ϕ in the general
setting of Banach spaces. The mixed hyperbolic and parabolic case for T < ∞ was studied by
Liero and Stefanelli [78], where the techniques were combined in order to deal with both ν
and ρ > 0, a quadratic dissipation and a specific choice of ϕ, namely

ψ(∂tu) =
ˆ

Ω

1
2 |∂tu|2 dx, ϕ(u) :=

ˆ
Ω

1
2 |∇u|2 + F (u) dx,

where F is λ-convex with derivative of polynomial growth. A more general class of nonlinear
hyperbolic problems was later considered in [110] for a quadratic dissipation functional ψ and
for T = ∞.
The WIDE approach has been used also to investigate parabolic problems which have been
introduced in Section 1.1 and are of interest for this thesis. Ortiz, Schmidt and Stefanelli [98]
exploited the method to prove the existence of a classical Leray-Hopf weak solution to the
incompressible Navier-Stokes system

∂tv + v · ∇v − ν∆v + ∇p = 0, div u = 0,

by means of the stabilized WED functionals

Iε(u) =
ˆ ∞

0
e−t/ε

(︃ ˆ
Ω

1
2 |∂tv + v · ∇v|2 + σ

2 |v · ∇v|2 + ν

2ε |∇v|2 dx
)︃

dt, σ, ν > 0,

under the incompressibility constraint div v = 0 and for given initial and (homogeneous
Dirichlet) boundary conditions. Recently, Bathory and Stefanelli [17] extended the result of
[98] by considering non-Newtonian fluids, by allowing for in- and outlets, and by assuming
general, nonhomogeneous boundary conditions. In the context of viscosity solutions to mean
curvature flow (cf. Subsec. 1.1.1), Spadaro and Stefanelli [119] proved that minimizers of the
relaxed WED functional

Iε(u) =
ˆ T

0
e−t/ε

(︃ ˆ
Ω

1
2 |∂tu|2 dx+ 1

ε
A(u)

)︃
dt, T < ∞,

converge to the gradient-flow trajectories of the relaxed area functional

A(u) =
ˆ

Ω

√︂
1 + |∇u|2 dx+ |Dsu|(Ω) +

ˆ
∂Ω

|φ− u| dHd−1,

along D(A) = BV (Ω), where Dsu denotes the singular part of the Radon measure Du,
whereas the function φ encodes the initial and boundary condition.
The WIDE variational approach gives the possibility to connect a difficult nonlinear PDE
problem with a the constrained minimization of a uniformly convex functional of the form of
(1.23). Furthermore, the application of the tools of the calculus of variations may provide a
variational insight to a differential problem. For instance, the functional (1.23) may admit a
unique minimizer, whereas no uniqueness may be known for the corresponding PDE problem
under general nonlinearities. In this regard, the variational approach may serve as a selection
criterion in some nonuniqueness situation. This possibility has been already checked for a
specific ODE case in [77], but also in [6] whenever ψ or ϕ is strictly convex.
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1.2. A variational approach to nonlinear evolution problems

1.2.2 Contribution of this thesis
In this thesis we discuss the Weighted Inertia-Dissipation-Energy (WIDE) approach to a class
of doubly nonlinear wave equations (cf. Chapter 5).

Weighted Inertia-Dissipation-Energy approach to doubly nonlinear wave equations

The aim of our work in collaboration with Goro Akagi, Verena Bögelein and Ulisse Stefanelli
[4] is to generalize the result of [78] to the case of non-quadratic dissipation. We consider the
WIDE functionals Iε (1.23) with ψ which is convex, of p-growth, and twice differentiable on
Lp(Ω) for p ∈ [2, 4), and ϕ of the form

ϕ(u) =
ˆ

Ω

1
2 |∇u|2 + F (u) dx,

where F is convex and of r-growth with r ∈ [0, p− 1]. In the following, we denote by dV ψ
the Gâteaux differential of ψ.
Our main result states as follows
The unique minimizers of the WIDE functional Iε converge, up to subsequences, to a strong
solution to the doubly nonlinear wave equation

ρ∂2
t u+ νdV ψ(∂tu) − ∆u+ f(u) = 0 in H−1(Ω), for almost all t ∈ (0, T ),

as the paramter ε goes to zero.
Our analysis relies on specific estimates on the WIDE minimizers, which are obtained by
readapting the ideas of [78, 120]. The main novelties of our work reside in the argument for
the decomposition and the representation of the subdifferential of the WIDE functional Iε and
in the strategy adopted in order to identify the nonlinearity dV ψ(u) in the limit. Moreover, we
investigate the viscous limit ρ → 0, both at the level of the functionals and at the level of their
minimizers. In particular, we prove that for (ρ, ε) → (0, 0) the minimizers of Iε converge to
the unique solution of the doubly nonlinear problem νdV ψ(∂tu) − ∆u+ f(u) = 0 in H−1(Ω),
for almost all t ∈ (0, T ).
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CHAPTER 2
Weak-strong uniqueness for the

Navier–Stokes equation for two fluids
with ninety degree contact angle and

same viscosities

This chapter contains the paper “Weak-strong uniqueness for the Navier–Stokes equation for
two fluids with ninety degree contact angle and same viscosities”[58], which is a joint work
with Sebastian Hensel and published in J. Math. Fluid Mech. 24, 93 (2022).

Abstract. We consider the flow of two viscous and incompressible fluids within a bounded
domain modeled by means of a two-phase Navier–Stokes system. The two fluids are assumed
to be immiscible, meaning that they are separated by an interface. With respect to the motion
of the interface, we consider pure transport by the fluid flow. Along the boundary of the
domain, a complete slip boundary condition for the fluid velocities and a constant ninety
degree contact angle condition for the interface are assumed. In the present work, we devise
for the resulting evolution problem a suitable weak solution concept based on the framework
of varifolds and establish as the main result a weak-strong uniqueness principle in 2D. The
proof is based on a relative entropy argument and requires a non-trivial further development
of ideas from the recent work of Fischer and the first author (Arch. Ration. Mech. Anal. 236,
2020) to incorporate the contact angle condition. To focus on the effects of the necessarily
singular geometry of the evolving fluid domains, we work for simplicity in the regime of same
viscosities for the two fluids.

2.1 Introduction

2.1.1 Context
The question of uniqueness or non-uniqueness of weak solution concepts in the context of
classical fluid mechanics models has seen a series of intriguing breakthroughs throughout the
last three decades. In case of the Euler equations, the journey started with the seminal works
of Scheffer [106] and Shnirelman [114] providing the construction of compactly supported
nonzero weak solutions. The first example of an energy dissipating weak solution to the Euler
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2. Stability of two-phase fluid flow with ninety degree contact angle

equations is again due to Shnirelman [115]. Later, De Lellis and Székelyhidi Jr. not only
strengthened these results in their groundbreaking works (see, e.g., [34] and [35]), but in
retrospect even more importantly introduced a novel perspective on the problem: their proofs
are based on a nontrivial transfer of convex integration techniques from typically geometric
PDEs to the framework of the Euler equations. Indeed, their ideas eventually culminated in
the resolution of Onsager’s conjecture by Isett [65]; see also the work of Buckmaster, De Lellis,
Székelyhidi Jr. and Vicol [26].
By now, these developments also generated spectacular results for the Navier–Stokes equations.
For instance, Buckmaster and Vicol [27] as well as Buckmaster, Colombo and Vicol [25]
establish that mild solutions in the energy class are non-unique. The constructed solutions are
not Leray–Hopf solutions, i.e., it is not proven that they are subject to the energy dissipation
inequality. However, Albritton, Brué and Colombo [11] even show in a very recent preprint
that one can construct an external force such that there exists a finite time horizon so that one
may construct at least two distinct Leray–Hopf solutions for the associated forced full-space
Navier–Stokes equations in 3D (both starting from zero initial data).
Hence, in terms of uniqueness of weak solutions the best one can expect in general is essentially a
weak-strong uniqueness principle. Roughly speaking, this refers to uniqueness of weak solutions
within a class of sufficiently regular solutions. In the context of the incompressible Navier–
Stokes equations, such results are classical and can be traced back to the works of Leray [75],
Prodi [100] and Serrin [111]. In the case of the compressible Navier–Stokes equations, we
mention the works of Germain [52], Feireisl, Jin and Novotný [43], as well as Feireisl and
Novotný [44]. The usual strategy to establish these results is based on a by now widely
used method which infers weak-strong uniqueness from a quantitative stability estimate for a
suitable distance measure between two solutions, the so-called relative entropy (or relative
energy). We refer to the survey article by Wiedemann [126] for an overview on the relative
entropy method in the context of mathematical fluid mechanics.
In the present work, we are concerned with the question of weak-strong uniqueness with respect
to a two-phase free boundary fluid problem within a physical domain Ω ⊂ Rd, d ∈ {2, 3}.
More precisely, we study this question in terms of a suitably devised concept of varifold
solutions for the evolution problem of the flow of two incompressible Navier–Stokes fluids
separated by a sharp interface. Along the boundary of the domain, a complete slip boundary
condition for the fluid velocities as well as a constant ninety degree contact angle condition
for the interface are assumed. For the precise PDE formulation of the model, we refer to
Subsection 2.1.2. For a discussion of the weak solution concept and its precise definition, we
instead refer to Subsection 2.1.3 and Definition 11, respectively. The main result of the present
work establishes in 2D a weak-strong uniqueness principle for the above introduced two-phase
free boundary fluid problem. We refer to Theorem 1 for the precise mathematical formulation
of our result. In the spirit of [46], we also derive a conditional weak-strong uniqueness result in
the three-dimensional setting; cf. Proposition 4 for the precise statement. To the best of the
authors’ knowledge, the present work is the first to establish weak-strong uniqueness in the
context of an interface evolution problem incorporating contact point dynamics in combination
with a fluid mechanical coupling.
Even when neglecting the fluid mechanics, uniqueness of weak solutions in form of a weak-
strong uniqueness principle is in general the best one can expect also for interface evolution
problems. In this context, this is due to the formation of singularities and topology changes;
see already, for instance, the work of Brakke [21] for mean curvature flow of networks of
interfaces in R2 or the work of Angenent, Ilmanen and Chopp [14] for mean curvature flow
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2.1. Introduction

of surfaces in R3. When restricting to the full-space setting Ω = Rd and thus neglecting
non-trivial boundary effects, Fischer and the first author [45] recently established a weak-strong
uniqueness principle up to the first singularity formation for the corresponding two-phase
free boundary fluid problem considered in this work. Their approach relies on a suitable
extension of the relative entropy method to get control on the difference in the underlying
geometries of two solutions; cf. Subsection 2.1.4 for a discussion in this direction. Their
ideas were later generalized by Fischer, Laux, Simon and the first author [46] to derive a
weak-strong uniqueness principle for BV solutions of Laux and Otto [73] to mean curvature
flow of networks of interfaces in R2, or even for canonical multiphase Brakke flows of Stuvard
and Tonegawa [122] (cf. also [56]).

The main challenges of the present work are twofold. First, we need to devise a weak solution
concept for the above introduced two-phase free boundary fluid problem. We emphasize that
this is not already contained in the work of Abels [1] which in the presence of surface tension
only deals with the full-space setting. Even though our notion of varifold solutions is clearly
directly inspired by Abels’ formulation, some additional thoughts are necessary in the present
setting of a bounded domain with contact point dynamics (cf. again Subsection 2.1.3 for a
discussion). Indeed, the point is to formulate a solution concept which on one side is weak
enough to allow for a satisfactory global-in-time existence theory (cf. Section 2.8 for a sketch
of an existence proof along the lines of the argument of Abels [1]), but on the other side is
still strong enough to support a weak-strong uniqueness principle. To obtain the latter, the
second challenge of the present work is to further develop parts of the analysis of Fischer and
the first author [45] to deal with the non-trivial boundary effects and the necessarily singular
geometry of the evolving fluid domains. Due to the latter two, it turns out to be beneficial to
implement the relative entropy argument based on a two-step procedure rather in the spirit
of [46] than the more direct approach from [45] (cf. Subsection 2.2.2 for further discussion).

2.1.2 Strong PDE formulation of the two-phase fluid model
We start with a description of the underlying evolving geometry. Denoting by Ω a bounded
domain in Rd with smooth and orientable boundary ∂Ω, d ∈ {2, 3}, each of the two fluids
is contained within a time-evolving domain Ω+(t) ⊂ Ω resp. Ω−(t) ⊂ Ω, t ∈ [0, T ). The
interface separating both fluids is given as the common boundary between the two fluid
domains. Denoting it at time t ∈ [0, T ) by I(t) ⊂ Ω, we then have a disjoint decomposition
of Ω in form of Ω = Ω+(t) ∪ Ω−(t) ∪ (I(t) ∩ Ω) ∪ ∂Ω for every t ∈ [0, T ). We write n∂Ω to
refer to the inner pointing unit normal vector field of ∂Ω, as well as nI(·, t) to denote the unit
normal vector field along I(t) pointing towards Ω+(t), t ∈ [0, T ).

With respect to internal boundary conditions along the separating interface, first, a no-slip
boundary condition is assumed. This in fact allows to represent the two fluid velocity fields by
a single continuous vector field v. We also consider a single scalar field p as the pressure, which
in contrast may jump across the interface. Second, along the interface the internal forces of
the fluids have to match a surface tension force. Denoting by χ(·, t) the characteristic function
associated with the domain Ω+(t), t ∈ [0, T ), and defining µ(χ) := µ+χ+ µ−(1−χ) with µ+

and µ− being the viscosities of the two fluids, the stress tensor T := µ(χ)(∇v+∇vT) − p Id
is required to satisfy

[[TnI ]](·, t) = σHI(·, t) along I(t) (2.1)

for all t ∈ [0, T ), where moreover [[·]] denotes the jump in normal direction, σ > 0 is the fixed
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2. Stability of two-phase fluid flow with ninety degree contact angle

surface tension coefficient of the interface, and HI(·, t) represents the mean curvature vector
field along the interface I(t), t ∈ [0, T ).
With respect to boundary conditions along ∂Ω, we assume in terms of the two fluids a complete
slip boundary conditions. In terms of the evolving geometry, a ninety degree contact angle
condition at the contact set of the fluid-fluid interface with the boundary of the domain is
imposed. Mathematically, this amounts to

v(·, t) · n∂Ω = 0 along ∂Ω, (2.2)(︂
n∂Ω · µ(χ)(∇v + ∇vT)(·, t)B

)︂
= 0 along ∂Ω (2.3)

for all t ∈ [0, T ) and all tangential vector fields B along ∂Ω, as well as

nI(·, t) · n∂Ω = 0 along I(t) ∩ ∂Ω (2.4)

for all t ∈ [0, T ). These boundary conditions not only prescribe that the fluid cannot exit
from the domain and that it can move only tangentially to its boundary, but they also exclude
any external contribution to the viscous stress and any friction effect with the boundary.
Observe also that the ninety degree contact angle condition is consistent with the complete slip
boundary conditions (2.2) and (2.3), in the sense that (2.4) together with (2.2) implies (2.3).
Furthermore, the ninety degree contact angle needs to be imposed only as an initial condition:
for later times it can be deduced using (2.2) and (2.3) and a Gronwall-type argument. For
details, see the remark after Definition 10.
Now, defining ρ(χ) := ρ+χ+ ρ−(1−χ) with ρ+ and ρ− representing the densities of the two
fluids, the fluid motion is given by the incompressible Navier–Stokes equation, which by (2.1)
and (2.3) can be formulated as

∂t
(︂
ρ(χ)v

)︂
+ ∇ ·

(︂
ρ(χ)v ⊗ v

)︂
= −∇p+ ∇ ·

(︂
µ(χ)(∇v + ∇vT)

)︂
+ σHI |∇χ|⌞Ω, (2.5)

∇ · v = 0, (2.6)

where |∇χ|(·, t)⌞Ω represents the surface measure Hd−1⌞(I(t) ∩ Ω), t ∈ [0, T ). Second, the
interface is assumed to be transported along the fluid flow. In other words, the associated
normal velocity of the interface is given by the normal component of the fluid velocity v.
Thanks to (2.2), (2.4) and (2.6), this is formally equivalent to

∂tχ+ (v · ∇)χ = 0. (2.7)

Finally, from a modeling perspective, the total energy of the PDE system (2.5)–(2.7) is given
by the sum of kinetic and surface tension energies

E[χ, v] :=
ˆ

Ω

1
2ρ(χ)|v|2 dx+ σ

ˆ
Ω

1 d|∇χ| + σ+
ˆ
∂Ω
χ dS + σ−

ˆ
∂Ω

(1 − χ) dS, (2.8)

where σ+ and σ− are the surface tension coefficients of ∂Ω ∩ Ω+
t and ∂Ω ∩ Ω−

t , respectively.
Note that the ninety degree contact angle condition (2.4) corresponds to σ− = σ+. Indeed,
a general constant contact angle α ∈ (0, π) is prescribed by Young’s equation which in our
notation reads as follows

σ cosα = σ+ − σ−.

In particular, by subtracting the constant
´
∂Ω 1 dS from (2.8) we see that the relevant part of

the total energy does not contain a surface energy contribution along ∂Ω in our special case
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of a constant ninety degree contact angle. By formal computations, one finally observes that
this energy satisfies an energy dissipation inequality

E[χ, v](T ′) +
ˆ T ′

0

ˆ
Ω

µ(χ)
2 |∇v + ∇vT |2 dx dt ≤ E[χ, v](0), T ′ ∈ [0, T ). (2.9)

2.1.3 Varifold solutions for two-phase fluid flow with 90◦ contact
angle

In terms of weak solution theories for the evolution problem (2.5)–(2.7), the energy dis-
sipation inequality suggests to consider velocity fields in the space L∞(0, T ;L2(Ω;Rd)) ∩
L2(0, T ;H1(Ω;Rd)), and the evolving geometry may be modeled based on a time-evolving
set of finite perimeter so that the associated characteristic function χ is an element of
L∞(0, T ;BV (Ω; {0, 1})).
However, a well-known problem arises when considering limit points of a sequence of
pairs (χk, vk)k∈N representing solutions originating from an approximation scheme for (2.5)–
(2.7). Ignoring the time variable for the sake of the discussion, the main point is that a uniform
bound of the form supk∈N ∥χk∥BV (Ω) < ∞ in general does not suffice to pass to the limit (not
even subsequentially) in the surface tension force σHIk

|∇χk|⌞Ω. Recalling that we work in a
setting with a ninety degree angle condition, this term is represented in distributional form by

ˆ
Ω

HIk
·B d|∇χk| = −

ˆ
Ω
(Id − nk ⊗ nk) : ∇B d|∇χk| (2.10)

for all smooth vector fields B which are tangential along ∂Ω, where nk = ∇χk

|∇χk| denotes the
measure-theoretic interface unit normal. One may pass to the limit on the right hand side
of the previous display provided |∇χk|(Ω) → |∇χ|(Ω). However, for standard approximation
schemes there is in general no reason why this should be true. For instance, hidden boundaries
may be generated within Ω in the limit. Furthermore, but now specific to the setting of a
bounded domain, nontrivial parts of the approximating interfaces may converge towards the
boundary ∂Ω.
The upshot is that one has to pass to an even weaker representation of the surface tension
force than (2.10). A popular workaround is based on the concept of (oriented) varifolds. In
the setting of the present work and in view of the preceding discussion, this in fact amounts to
consider the space of finite Radon measures on the product space Ω×Sd−1. Indeed, introducing
the varifold lift Vk := |∇χk|⌞Ω ⊗ (δnk(x))x∈Ω one may equivalently express the right hand side
of (2.10) in terms of the functional B ↦→ −

´
Ω×Sd−1(Id−s⊗ s) : ∇B dVk(x, s) which is now

stable with respect to weak∗ convergence in the space of finite Radon measures on Ω×Sd−1.
Note also that by the choice of working in a varifold setting, one expects σ

´
Ω 1 d|V |Sd−1

instead of σ
´

Ω 1 d|∇χ| as the interfacial energy contribution in (2.8), where the finite Radon
measure |V |Sd−1 denotes the mass of the varifold V .
Motivated by the previous discussion, we give a full formulation of a varifold solution concept
to two-phase fluid flow with surface tension and constant ninety degree contact angle in
Definition 11 below. This definition is nothing else but the suitable analogue of the definition
by Abels [1], who provides for the full-space setting a global-in-time existence theory for such
varifold solutions with respect to rather general initial data. Unfortunately, in the bounded
domain case with non-zero interfacial surface tension, to the best of our knowledge a global-
in-time existence result for varifold solutions is missing. In particular, such a result is not
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2. Stability of two-phase fluid flow with ninety degree contact angle

contained in the work of Abels [1]. For this reason, we include in this work at least a sketch of
an existence proof. To this end, one may follow on one side the higher-level structure of the
argument given by Abels [1] for the full-space setting. On the other side, additional arguments
are of course necessary due to the specified boundary conditions for the geometry and the
fluids, respectively. These additional arguments are outlined in Section 2.8.

2.1.4 Weak-strong uniqueness for varifold solutions of two-phase
fluid flow

In case the two fluids occupy the full space Rd, d ∈ {2, 3}, a weak-strong uniqueness result
for Abels’ [1] varifold solutions of the system (2.5)–(2.7) was recently established by Fischer
and the first author [45]. Given sufficiently regular initial data, it is shown that on the time
horizon of existence of the associated unique strong solution, any varifold solution in the sense
of Abels [1] starting from the same initial data has to coincide with this strong solution.

This result is achieved by extending a by now several decades old idea in the analysis of
classical PDE models from continuum mechanics to a previously not covered class of problems:
a relative entropy method for surface tension driven interface evolution. The gist of this
method can be described as follows. Based on a dissipated energy functional, one first tries to
build an error functional — the relative entropy — which penalizes the difference between two
solutions in a sufficiently strong sense. A minimum requirement is to ensure that the error
functional vanishes if and only if the two solutions coincide. In a second step, one proceeds by
computing the time evolution of this error functional. In a third step, one tries to identify all
the terms appearing in this computation as contributions which either are controlled by the
error functional itself or otherwise may be absorbed into a residual quadratic term represented
essentially by the difference of the dissipation energies. One finally concludes by an application
of Gronwall’s lemma.

The novelty of the work [45] consists of an implementation of this strategy for the full-space
version of the energy functional (2.8). More precisely, the relative entropy as it was originally
constructed in the full-space setting in [45] essentially consists of two contributions. The first
aims for a penalization of the difference of the underlying geometries of the two solutions.
This in fact is performed at the level of the interfaces by introducing a tilt-excess type error
functional with respect to the two associated unit normal vector fields. To this end, the
construction of a suitable extension of the unit normal vector field of the interface of the
strong solution in the vicinity of its space-time trajectory is required. Furthermore, the length
of this vector field is required to decrease quadratically fast as one moves away from the
interface of the strong solution. The merit of this is that one also obtains a measure of the
interface error in terms of the distance between them.

Due to the inclusion of contact point dynamics in form of a constant ninety degree contact
angle, some additional ingredients are needed for the present work. We refer to Subsection 2.2.2
below for a detailed and mathematical account on the geometric part of the relative entropy
functional. There are however two notable additional difficulties in comparison to [45] which
are worth emphasizing already at this point. Both are related to the required extension ξ of
the unit normal vector field associated with the evolving interface of the strong solution. The
first is concerned with the correct boundary condition for the extension ξ along ∂Ω. Since
along the contact set the interface intersects the boundary of the domain orthogonally, it is
natural to enforce ξ to be tangential along ∂Ω. This indeed turns out to be the right condition
as it allows by an integration by parts to rewrite the interfacial part of the relative entropy as
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the sum of interfacial energy of the weak solution and a linear functional with respect to the
characteristic function χ of the weak solution. This is crucial to even attempt computing the
time evolution.
The second difference concerns the actual construction of the extension ξ. In contrast to [45],
where only a finite number of sufficiently regular closed curves (d = 2) or closed surfaces
(d = 3) are allowed at the level of the strong solution, this results in a nontrivial and subtle
task in the context of the present work due to the necessarily singular geometry in contact
angle problems. The main difficulty roughly speaking is to provide a construction which on
one side respects the required boundary condition and on the other side is regular enough to
support the computations and estimates in the Gronwall-type argument. For a complete list
of the required conditions for the extension ξ, we refer to Definition 2 below.
We finally turn to a brief discussion of the second contribution in the total relative entropy
functional from [45]. In principle, this term on first sight should be nothing else than the relative
entropy analogue to the kinetic part of the energy of the system, thus controlling the squared
L2-distance between the fluid velocities of the two solutions. However, as recognized in [45]
a major problem arises for the two-phase fluid problem in the regime of different viscosities
µ+ ̸= µ−: without performing a very careful (and in its implementation highly technical)
perturbation of this naive ansatz for the fluid velocity error, a Gronwall-type argument will not
be realizable; cf. for more details the discussion in [45, Subsection 3.4]. Since the main focus
of the present work lies on the inclusion of the ninety degree contact angle condition, we do
not delve into these issues and simply assume for the rest of this work that the viscosities
of the two fluids coincide: µ := µ+ = µ−. We emphasize, however, that at least for the
construction of the extension ξ and the verification of its properties we in fact do not rely on
this assumption.

2.2 Main results
2.2.1 Weak-strong uniqueness and stability of evolutions
The main result of this chapter reads as follows.

Theorem 1. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable and smooth
boundary. Let (χu, u, V ) be a varifold solution to the incompressible Navier–Stokes equation
for two fluids in the sense of Definition 11 on a time interval [0, Tw). Let (χv, v) be a
strong solution to the incompressible Navier–Stokes equation for two fluids in the sense of
Definition 10 on a time interval [0, Ts) where Ts ≤ Tw.
Then, for every T ∈ (0, Ts) there exists a constant C = C(χv, v, T ) > 0 such that the relative
entropy functional (2.29) and the bulk error functional (2.31) satisfy stability estimates of the
form

E[χu, u, V |χv, v](t) ≤ CeCt
(︂
E[χu, u, V |χv, v](0) + Evol[χu|χv](0)

)︂
, (2.11)

Evol[χu|χv](t) ≤ CeCt
(︂
E[χu, u, V |χv, v](0) + Evol[χu|χv](0)

)︂
(2.12)

for almost every t ∈ [0, T ].
In particular, in case the initial data for the varifold solution and strong solution coincide, it
follows that

χu(·, t) = χv(·, t), u(·, t) = v(·, t) a.e. in Ω for a.e. t ∈ [0, Ts), (2.13)
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Vt = (|∇χu(·, t)|⌞Ω) ⊗
(︂
δ ∇χu(·,t)

|∇χu(·,t)| (x)

)︂
x∈Ω

for a.e. t ∈ [0, Ts). (2.14)

Before proceeding with a discussion on the proof of Theorem 1, we comment on its validity
in the regime of different shear viscosities µ+ ̸= µ− of the two fluids (cf. also the detailed
discussion in [45, Subsection 3.4]). In this case, one would have to deal with an additional
term in the derivation of the Gronwall inequality (2.11) of the form

−
ˆ T ′

0

ˆ
Ω
(µ+ − µ−)(χu − χv)2(∇symu− ∇symv) : ∇v dx. (2.15)

A major problem then results from the observation that, even for strong solutions, the normal
derivative of the tangential velocity is discontinuous across the associated interface in case
µ+ ̸= µ−. As a consequence, the term (2.15) is in fact only of linear order in our error
functionals which makes the derivation of a stability estimate as in (2.11) infeasible (cf. the
example given in [45, Subsection 3.4]).

The key idea for the weak-strong uniqueness result in the different viscosities regime in the full
space setting [45] was to adapt the kinetic energy contribution of the relative entropy: instead
of comparing u with v directly, one carefully constructs an auxiliary divergence free vector
field w and compares u with v + w. The two desired main properties of w are as follows.
First, the L2 norm of w shall be controlled by the interfacial error contribution of the relative
entropy, so that the adapted relative entropy does not lose coercivity with respect to the error
in the velocity fields. Second, ∇w should be designed such that it essentially compensates the
linear order error term (2.15). The main idea for the latter is to adapt ∇v through ∇w to the
different location of the interface of the varifold solution.

Of course, also in our bounded domain setting with constant 90◦ degree contact angle and pure
slip condition, this additional adaptation of the relative entropy is needed to conclude about the
validity of Theorem 1 in case of different viscosities for the two fluids. In principle, we expect
this to be possible in the setting of the present work. However, adapting the construction of
the compensating vector field w from [45] in the vicinity of the domain boundary (in order to
satisfy required boundary conditions) together with then verifying all of its desired properties
may certainly require a substantial amount of technical work (e.g., due to the singular nature
of the geometry at the contact set). For this reason, we omit the rigorous study of the different
viscosities regime in this work and we leave it as a possible further development of our result.
Finally, as for the validity of Theorem 1 for non-Newtonian fluids, we mention that this is an
open problem in both the full space setting and the setting of the present work.

Returning to the regime of same viscosities µ+ = µ−, we explain throughout the next two
subsections the key ideas underlying the proof of Theorem 1.

2.2.2 Quantitative stability by a relative entropy approach
Following the general strategy of [45], our weak-strong uniqueness result essentially relies on
two ingredients: i) the construction of a suitable extension ξ of the unit normal vector field
of the interface of a strong solution, and ii) based on this extension, the introduction of a
suitably defined error functional penalizing the interface error between a varifold and a strong
solution in a sufficiently strong sense. In comparison to [45], the extension of the unit normal
has to be carefully constructed in the sense that the vector field ξ is required to be tangent to
the domain boundary ∂Ω (which is the natural boundary condition in case of a 90◦ contact
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angle). Due to the singular nature of the geometry at the contact set, this is a nontrivial task.
The precise conditions on the extension ξ are summarized as follows.

Definition 2 (Boundary adapted extension of the interface unit normal). Let d ∈ {2, 3}, and
let Ω ⊂ Rd be a bounded domain with orientable and smooth boundary. Let T ∈ (0,∞) be
a finite time horizon. Let (χv, v) be a strong solution to the incompressible Navier–Stokes
equation for two fluids in the sense of Definition 10 on the time interval [0, T ].
In this setting, we call a vector field ξ : Ω × [0, T ] → Rd a boundary adapted extension of nIv

for two-phase fluid flow (χv, v) with 90◦ contact angle if the following conditions are satisfied:

• In terms of regularity, it holds ξ ∈
(︂
C0
t C

2
x ∩ C1

t C
0
x

)︂(︂
Ω×[0, T ] \ (Iv ∩ (∂Ω×[0, T ]))

)︂
.

• The vector field ξ extends the unit normal vector field nIv (pointing inside Ω+
v ) of the

interface Iv subject to the conditions

|ξ| ≤ max
{︂
0, 1−C dist2(·, Iv)

}︂
in Ω × [0, T ], (2.16a)

ξ · n∂Ω = 0 on ∂Ω × [0, T ], (2.16b)
∇ · ξ = −HIv on Iv, (2.16c)

for some C > 0. Here, HIv denotes the scalar mean curvature of the interface Iv (oriented
with respect to the normal nIv).

• The fluid velocity approximately transports the vector field ξ in form of

∂tξ + (v · ∇)ξ + (Id −ξ ⊗ ξ)(∇v)Tξ = O(dist(·, Iv) ∧ 1) in Ω × [0, T ], (2.16d)
∂t|ξ|2 + (v · ∇)|ξ|2 = O(dist2(·, Iv) ∧ 1) in Ω × [0, T ]. (2.16e)

Let us comment on the motivation behind this definition. Given a vector field ξ with respect to
a fixed strong solution (χv, v) as in the previous definition, we may introduce for any varifold
solution (χu, u, V ) and for all t ∈ [0, T ] a functional

E[χu, V |χv](t) := σ

ˆ
Ω

1 d|Vt|Sd−1 − σ

ˆ
Iu(t)

∇χu(·, t)
|∇χu(·, t)|

· ξ(·, t) dHd−1, (2.17)

where Iu(t) := supp|∇χu(·, t)| ∩ Ω denotes the interface associated to the varifold solution.
The functional E[χu, V |χv] is a measure for the interfacial error between the two solutions
for the following reasons. First of all, it is a consequence of the definition of a varifold
solution, cf. the compatibility condition (2.42), that for almost every t ∈ [0, T ] it holds
|∇χu(·, t)|⌞Ω ≤ |Vt|Sd−1⌞Ω in the sense of measures on Ω. In particular, it follows that the
functional E[χu, V |χv] controls its “BV-analogue”

0 ≤ E[χu|χv](t) := σ

ˆ
Iu(t)

1 − ∇χu(·, t)
|∇χu(·, t)|

· ξ(·, t) dHd−1 ≤ E[χu, V |χv](t). (2.18)

Introducing the Radon–Nikodým derivative θt := d|∇χu(·,t)|⌞Ω
d|Vt|Sd−1⌞Ω , one can be even more precise in

the sense that

E[χu, V |χv](t) = σ

ˆ
∂Ω

1 d|Vt|Sd−1 + σ

ˆ
Ω

1 − θt d|Vt|Sd−1 + E[χu|χv](t). (2.19)
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2. Stability of two-phase fluid flow with ninety degree contact angle

This representation of the functional E[χu, V |χv] as well as the length constraint (2.16a) for
the vector field ξ lead to the following two observations. First, the functional E[χu, V |χv]
controls the mass of hidden boundaries and higher multiplicity interfaces (i.e., where θt ∈ [0, 1))
in the sense of

σ

ˆ
∂Ω

1 d|Vt|Sd−1 + σ

ˆ
Ω

1 − θt d|Vt|Sd−1 ≤ E[χu, V |χv](t). (2.20)

Second, because of (2.16a) it measures the interface error in the sense that

σ

ˆ
Iu(t)

1
2

⃓⃓⃓⃓
⃓ ∇χu(·, t)
|∇χu(·, t)|

− ξ

⃓⃓⃓⃓
⃓
2

dHd−1 ≤ E[χu|χv](t), (2.21)

σ

ˆ
Iu(t)

min
{︂
1, C dist2(·, Iv(t))

}︂
dHd−1 ≤ E[χu|χv](t). (2.22)

On a different note, the compatibility condition (2.42) satisfied by a varifold solution together
with the boundary condition (2.16b) also allows to represent the error functional E[χu, V |χv]
in the alternative form

E[χu, V |χv](t) = σ

ˆ
Ω×Sd−1

1 − s · ξ dVt, (2.23)

which then entails as a consequence of (2.16a)

σ

ˆ
Ω×Sd−1

1
2 |s− ξ|2 dVt ≤ E[χu, V |χv](t), (2.24)

σ

ˆ
Ω

min
{︂
1, C dist2(·, Iv(t))

}︂
d|Vt|Sd−1 ≤ E[χu, V |χv](t). (2.25)

Finally, let us quickly discuss what is implied by E[χu, V |χv](t) = 0. We claim that (2.14) and
Iu(t) ⊂ Iv(t) up to Hd−1-negligible sets have to be satisfied. Indeed, the latter follows directly
from (2.18) and (2.22). The former is best seen when representing the varifold Vt⌞(Ω×Sd−1)
by its disintegration (|Vt|Sd−1⌞Ω) ⊗ (νx,t)x∈Ω. Then, it follows on one side from (2.20) that
|Vt|Sd−1⌞∂Ω = 0 and |Vt|Sd−1⌞Ω = |∇χu(·, t)|⌞Ω as measures on ∂Ω and Ω, respectively, and
then on the other side that νx,t = δ ∇χu(·,t)

|∇χu(·,t)| (x) for |∇χu(·, t)|-a.e. x ∈ Ω due to

ˆ
Ω

ˆ
Sd−1

1
2

⃓⃓⃓⃓
⃓s− ∇χu(·, t)

|∇χu(·, t)|
(x)
⃓⃓⃓⃓
⃓
2

dνx,t(s) d(|∇χu(·, t)|⌞Ω)(x)

=
ˆ

Ω

ˆ
Sd−1

1 − s · ∇χu(·, t)
|∇χu(·, t)|

(x) dνx,t(s) d(|∇χu(·, t)|⌞Ω)(x) = 0,

where for the last equality we simply plugged in the compatibility condition (2.42) and again
|Vt|Sd−1⌞∂Ω = 0 as well as |Vt|Sd−1⌞Ω = |∇χu(·, t)|⌞Ω.
Apart from these coercivity conditions, it is equally important to be able to estimate the
time evolution of the error functional E[χu, V |χv]. The main observation in this regard is
that the functional can be rewritten as a perturbation of the interface energy E[χu, V ](t) :=
σ
´

Ω 1 d|Vt|Sd−1 which is linear in the dependence on the indicator function χu. Indeed, thanks
to the boundary condition (2.16b) for the extension ξ, a simple integration by parts readily
reveals

E[χu, V |χv](t) = E[χu, V ](t) + σ

ˆ
Ω
χu(·, t)(∇ · ξ)(·, t) dx. (2.26)
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This structure is in fact the very reason why we call E[χu, V |χv] a relative entropy. Computing
the time evolution of E[χu|χv] then only requires to exploit the dissipation of energy and using
∇ · ξ as a test function in the evolution equation of the phase indicator χu of the varifold
solution. The latter in turn requires knowledge on the time evolution of ξ itself, which is
encoded in terms of the fluid velocity v through the equations (2.16d) and (2.16e). The
condition (2.16c) is natural in view of the interpretation of ξ as an extension of the unit
normal nIv away from the interface Iv.
Even though all of this may already be quite promising, there is one small caveat: obviously,
one can not deduce from E[χu, V |χv] = 0 that χu = χv (e.g., χu representing an empty phase
is consistent with having vanishing relative entropy). This lack of coercivity in the regime of
vanishing interface measure motivates to introduce a second error functional which directly
controls the deviation of χu from χv. The main input to such a functional is captured in the
following definition.

Definition 3 (Transported weight). Let d ∈ {2, 3}, and let Ω ⊂ Rd be a bounded domain
with orientable and smooth boundary. Let T ∈ (0,∞) be a finite time horizon, consider a
solenoidal vector field v ∈ L2([0, T ];H1(Ω;Rd)) with (v · n∂Ω)|∂Ω = 0, and let (Ω+

v (t))t∈[0,T ]
be a family of sets of finite perimeter in Ω. Denote by Iv(t), t ∈ [0, T ], the reduced boundary
of Ω+

v (t) in Ω. Writing χv(·, t) for the indicator function associated to Ω+
v (t), assume that

∂tχv = −∇ · (χvv) in a weak sense.
In this setting, we call a map ϑ : Ω × [0, T ] → [−1, 1] a transported weight with respect to
(χv, v) if the following conditions are satisfied:

• (Regularity) It holds ϑ ∈ W 1,∞
x,t (Ω × [0, T ]).

• (Coercivity) Throughout the essential interior of Ω+
v (relative to Ω) it holds ϑ < 0,

throughout the essential exterior of Ω+
v (relative to Ω) it holds ϑ > 0, and along Iv ∪ ∂Ω

we have ϑ = 0. There also exists C > 0 such that
dist(·, ∂Ω) ∧ dist(·, Iv) ∧ 1 ≤ C|ϑ| in Ω × [0, T ]. (2.27)

• (Transport equation) There exists C > 0 such that
|∂tϑ+ (v · ∇)ϑ| ≤ C|ϑ| in Ω × [0, T ]. (2.28)

The merit of the previous two definitions is now the following result. It reduces the proof of
Theorem 1 to the existence of a boundary adapted extension ξ of the interface unit normal
and a transported weight ϑ with respect to a strong solution (χv, v), respectively.

Proposition 4 (Conditional weak-strong uniqueness principle). Let d ∈ {2, 3}, and let Ω ⊂ Rd

be a bounded domain with orientable and smooth boundary. Let (χu, u, V ) be a varifold
solution to the incompressible Navier–Stokes equation for two fluids in the sense of Definition 11
on a time interval [0, T ]. Consider in addition a strong solution (χv, v) to the incompressible
Navier–Stokes equation for two fluids in the sense of Definition 10 on a time interval [0, T ].
Assume there exists a boundary adapted extension ξ of the unit normal nIv as well as a
transported weight ϑ with respect to (χv, v) in the sense of Definition 2 and Definition 3,
respectively. Then the stability estimates (2.11) and (2.12) for the relative entropy func-
tional (2.29) and the bulk error functional (2.31) are satisfied, respectively. Moreover, if the
initial data of the varifold solution and the strong solution coincide, we may conclude that

χu(·, t) = χv(·, t), u(·, t) = v(·, t) a.e. in Ω for a.e. t ∈ [0, T ],

31



2. Stability of two-phase fluid flow with ninety degree contact angle

Vt = (|∇χu(·, t)|⌞Ω) ⊗
(︂
δ ∇χu(·,t)

|∇χu(·,t)| (x)

)︂
x∈Ω

for a.e. t ∈ [0, T ].

A proof of this conditional weak-strong uniqueness principle is presented in Subsection 2.3.3
below. We emphasize again that it is valid for d ∈ {2, 3}. The key ingredient to the stability
estimate (2.11) is the following relative entropy inequality. We refer to Subsection 2.3.1 for a
proof.

Proposition 5 (Relative entropy inequality in case of a 90◦ contact angle). Let d ∈ {2, 3},
and let Ω ⊂ Rd be a smooth and bounded domain. Let (χu, u, V ) be a varifold solution to
the incompressible Navier–Stokes equation for two fluids in the sense of Definition 11 on a
time interval [0, T ]. In particular, let θ be the density θt := d|∇χu(·,t)|⌞Ω

d|Vt|Sd−1⌞Ω as defined in (2.43).
Furthermore, let (χv, v) be a strong solution in the sense of Definition 10 on the same time
interval [0, T ], and assume there exists a boundary adapted extension ξ of the interface unit
normal nIv with respect to (χv, v) as in Definition 2.
Then, the total relative entropy defined by (recall the definition (2.17) of the interface
contribution E[χu, V |χv])

E[χu, u, V |χv, v](t) :=
ˆ

Ω

1
2ρ(χu(·, t))|u(·, t) − v(·, t)|2 dx+ E[χu, V |χv](t) (2.29)

satisfies the relative entropy inequality

E[χu, u, V |χv, v](T ′) +
ˆ T ′

0

ˆ
Ω

µ

2 |∇(u− v) + ∇(u− v)T|2 dx dt

≤ E[χu, u, V |χv, v](0) + Rdt +Radv +RsurTen, (2.30)

for almost every T ′ ∈ [0, T ], where we made use of the abbreviations (denote by nu := ∇χu

|∇χu|
the measure-theoretic unit normal)

Rdt = −
ˆ T ′

0

ˆ
Ω
(ρ(χv) − ρ(χu))(u− v) · ∂tv dx dt,

Radv = −
ˆ T ′

0

ˆ
Ω
(ρ(χu) − ρ(χv))(u− v) · (v · ∇)v dx dt

−
ˆ T ′

0

ˆ
Ω
ρ(χu)(u− v) · ((u− v) · ∇)v dx dt,

as well as

RsurTen = − σ

ˆ T ′

0

ˆ
Ω×Sd−1

(s− ξ) · ((s− ξ) · ∇)v dVt(x, s) dt

+ σ

ˆ T ′

0

ˆ
Ω
(1 − θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

ˆ T ′

0

ˆ
∂Ω
ξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

ˆ T ′

0

ˆ
Ω
(χu − χv)((u− v) · ∇)(∇ · ξ) dx dt
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− σ

ˆ T ′

0

ˆ
Ω
(nu − ξ) · (∂tξ + (v · ∇)ξ + (Id−ξ ⊗ ξ)(∇v)Tξ) d|∇χu| dt

− σ

ˆ T ′

0

ˆ
Ω
((nu − ξ) · ξ)(ξ ⊗ ξ : ∇v) d|∇χu| dt

− σ

ˆ T ′

0

ˆ
Ω

(︃
∂t

1
2 |ξ|2 + (v · ∇)1

2 |ξ|2
)︃

d|∇χu| dt

+ σ

ˆ T ′

0

ˆ
Ω
(1 − nu · ξ)(∇ · v) d|∇χu| dt.

The stability estimate (2.12) for the bulk error functional is in turn based on the following
auxiliary result; see Subsection 2.3.2 for a proof.

Lemma 6 (Time evolution of the bulk error). Let d ∈ {2, 3}, and let Ω ⊂ Rd be a smooth
and bounded domain. Let T ∈ (0,∞) be a finite time horizon, and let (χv, v) be as in
Definition 3 of a transported weight. Let (χu, u, V ) be a varifold solution to the incompressible
Navier–Stokes equation for two fluids in the sense of Definition 11 on [0, T ]. Assume there
exists a transported weight ϑ with respect to (χv, v) in the sense of Definition 3, and define
the bulk error functional

Evol[χu|χv](t) :=
ˆ

Ω
|χu(·, t) − χv(·, t)||ϑ(·, t)| dx. (2.31)

Then the following identity holds true for almost every T ′ ∈ [0, T ]

Evol[χu|χv](T ′) = Evol[χu|χv](0) +
ˆ T ′

0

ˆ
Ω
(χu − χv)(∂tϑ+ (v · ∇)ϑ) dx dt (2.32)

+
ˆ T ′

0

ˆ
Ω
(χu − χv)

(︂
(u− v) · ∇

)︂
ϑ dx dt.

2.2.3 Existence of boundary adapted extensions of the interface
unit normal and transported weights in planar case

To upgrade the conditional weak-strong uniqueness principle of Proposition 4 to the statement
of Theorem 1, it remains to construct a boundary adapted extension ξ of nIv and a transported
weight ϑ associated to a given strong solution (χv, v). In the context of the present work, we
perform this task for simplicity in the planar regime d = 2. However, it is expected that the
principles of the construction carry over to the case d = 3 involving contact lines.

Proposition 7. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable and smooth
boundary. Let (χv, v) be a strong solution to the incompressible Navier–Stokes equation for
two fluids in the sense of Definition 10 on a time interval [0, T ]. Then there exists a boundary
adapted extension ξ of nIv w.r.t. (χv, v) in the sense of Definition 2.

A proof of this result is presented in Subsection 2.6.2 below. One major step in the proof
consists of reducing the global construction to certain local constructions being supported in
the bulk Ω or in the vicinity of contact points along ∂Ω, respectively. The main ingredients
for this reduction argument are provided in Subsection 2.6.1. The construction of suitable
local vector fields subject to conditions as in Definition 2 is in turn relegated to Section 2.4
(bulk construction) and Section 2.5 (construction near contact points). We finally provide the
construction of a transported weight in Section 2.7.
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2. Stability of two-phase fluid flow with ninety degree contact angle

Lemma 8. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable and smooth
boundary. Let (χv, v) be a strong solution to the incompressible Navier–Stokes equation
for two fluids in the sense of Definition 10 on a time interval [0, T ]. Then there exists a
transported weight ϑ w.r.t. (χv, v) in the sense of Definition 3.

2.2.4 Definition of varifold and strong solutions
In this subsection, we present definitions of strong and varifold solutions for the free-boundary
problem of the evolution of two immiscible, incompressible, viscous fluids separated by a sharp
interface with surface tension inside a bounded domain Ω ⊂ Rd, d ∈ {2, 3}, with smooth and
orientable boundary. Recall in this context that we restrict ourselves to the case of a 90◦

contact angle between the interface and the boundary of the domain Ω. In order to define
a notion of strong solutions, we first introduce the notion of a smoothly evolving domain
within Ω.

Definition 9 (Smoothly evolving domains and smoothly evolving interfaces with 90◦ contact
angle). Let d ∈ {2, 3}, and let Ω ⊂ Rd be a bounded domain with orientable and smooth
boundary. Let T ∈ (0,∞) be a finite time horizon. Consider an open subset Ω+

0 ⊂ Ω subject
to the following regularity conditions:

• Denoting by I0 the closure of ∂Ω+
0 ∩ Ω in Ω, we require I0 to be a (d−1)-dimensional

uniform C3
x submanifold of Ω with or without boundary. Moreover, I0 is compact and

consists of finitely many connected components.

• Interior points of I0 are contained in Ω, whereas boundary points of I0 are contained in
∂Ω. In particular, I0 ∩ ∂Ω is a (d−2)-dimensional uniform C3

x submanifold of ∂Ω.

• Whenever I0 intersects with ∂Ω, it does so by forming an angle of 90◦.

Now, consider a set Ω+ = ⋃︁
t∈[0,T ] Ω+(t)×{t} represented in terms of open subsets Ω+(t) ⊂ Ω

for all t ∈ [0, T ]. Denote by I(t) the closure of ∂Ω+(t) ∩ Ω in Ω, t ∈ [0, T ]. We call Ω+

a smoothly evolving domain in Ω, and I = ⋃︁
t∈[0,T ] I(t)×{t} a smoothly evolving interface

with 90◦ contact angle, if there exists a flow map ψ : Ω × [0, T ] → Ω such that the following
requirements are satisfied:

• ψ(·, 0) = Id. For any t ∈ [0, T ], the map ψt := ψ(·, t) : Ω → Ω is a C3
x diffeomorphism

such that ψt(Ω) = Ω, ψt(∂Ω) = ∂Ω and supt∈[0,T ] ∥ψt∥W 3,∞
x (Ω) < ∞.

• For all t ∈ [0, T ], it holds Ω+(t) = ψt(Ω+
0 ) and I(t) = ψt(I0).

• ∂tψ ∈ C([0, T ];C1(Ω)) such that supt∈[0,T ] ∥∂tψ(·, t)∥W 1,∞
x (Ω) < ∞.

• Whenever I(t), t ∈ [0, T ], intersects ∂Ω it does so by forming an angle of 90◦.

With the geometric setup in place, we can proceed with our notion of strong solutions to
two-phase Navier–Stokes flow with 90◦ contact angle.

Definition 10 (Strong solution). Let d ∈ {2, 3}, and let Ω ⊂ Rd be a bounded domain
with orientable and smooth boundary. Let a surface tension constant σ > 0, the densities
and shear viscosity of the two fluids ρ±, µ > 0, and a finite time Ts > 0 be given. Let
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χ0 denote the indicator function of an open subset Ω+
0 ⊂ Ω subject to the conditions of

Definition 9. Denoting the associated initial interface by Iv(0), let a solenoidal initial velocity
profile v0 ∈ L2(Ω;Rd) be given such that it holds v0 ∈ C2(Ω \ Iv(0)). (Of course, additional
compatibility conditions in terms of an initial pressure p0 have to be satisfied by v0 to allow
for the below required regularity of the solution.)
A pair (χv, v) consisting of a velocity field v : Ω × [0, Ts) → Rd and an indicator function
χv : Ω × [0, Ts) → {0, 1} is called a strong solution to the free boundary problem for the
Navier–Stokes equation for two fluids with 90◦ contact angle and initial data (χ0, v0) if for all
T ∈ (0, Ts) it is a strong solution on [0, T ] in the following sense:

• It holds
v ∈ W 1,∞([0, T ];W 1,∞(Ω;Rd)),
∇v ∈ L1([0, T ]; BV(Ω;Rd×d)),
χv ∈ L∞([0, T ]; BV(Ω; {0, 1})).

• Define Ω+
v (t) := {x ∈ Ω : χv(x, t) = 1}. Then, Ω+

v = ⋃︁
t∈[0,T ] Ω+

v (t)×{t} is a smoothly
evolving domain in Ω in the sense of Definition 9 with Ω+

v (0) = Ω+
0 . Denoting by Iv(t) the

closure of ∂Ω+
v (t) ∩ Ω in Ω for all t ∈ [0, T ], the set Iv = ⋃︁

t∈[0,T ] Iv(t)×{t} is a smoothly
evolving interface with 90◦ contact angle in the sense of Definition 9. In particular, for
every t ∈ [0, T ] and every contact point c(t) ∈ Iv(t) ∩ ∂Ω

n∂Ω(c(t)) · nIv(c(t), t) = 0. (2.33)
Moreover, for every t ∈ [0, T ] and every c(t) ∈ Iv(t) ∩ ∂Ω the following higher-order
compatibility condition is required to hold:

−
(︂
(n∂Ω · ∇)(nIv · v)

)︂
(c(t), t) = H∂Ω(c(t))(nIv · v)(c(t), t), (2.34)

where H∂Ω denotes the scalar mean curvature of ∂Ω (with respect to the inward pointing
unit normal n∂Ω).

• The velocity field v has vanishing divergence ∇ · v = 0, and it satisfies the boundary
conditions

v(·, t) · n∂Ω = 0 along ∂Ω, (2.35)(︂
n∂Ω · µ(∇v + ∇vT)(·, t)B

)︂
= 0 along ∂Ω (2.36)

for all t ∈ [0, T ] and all tangential vector fields B along ∂Ω. Moreover, the equation for
the momentum balanceˆ

Ω
ρ(χv(·, T ′))v(·, T ′) · η(·, T ′) dx−

ˆ
Ω
ρ(χ0))v0 · η(·, 0) dx

=
ˆ T ′

0

ˆ
Ω
ρ(χv)v · ∂tη dx dt+

ˆ T ′

0

ˆ
Ω
ρ(χv)v ⊗ v : ∇η dx dt (2.37)

−
ˆ T ′

0

ˆ
Ω
µ(∇v + ∇vT) : ∇η dx dt+ σ

ˆ T ′

0

ˆ
Iv(t)

HIv · η dS dt

holds true for almost every T ′ ∈ [0, T ] and every η ∈ C∞(Ω × [0, T ];Rd) such that
∇ · η = 0 as well as (η · n∂Ω)|∂Ω = 0. Here, HIv(·, t) denotes the mean curvature
vector of the interface Iv(t). For the sake of brevity, we have used the abbreviation
ρ(χ) := ρ+χ+ ρ−(1 − χ).
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2. Stability of two-phase fluid flow with ninety degree contact angle

• The indicator function χv is transported by the fluid velocity v in form of
ˆ

Ω
χv(·, T ′)φ(·, T ′) dx−

ˆ
Ω
χ0φ(·, 0) dx =

ˆ T ′

0

ˆ
Ω
χv(∂tφ+(v · ∇)φ) dx dt (2.38)

for almost every T ′ ∈ [0, T ] and all φ ∈ C∞(Ω × [0, T ]).

• It holds v ∈ C1
t C

0
x(Ω×[0, T ] \ Iv) ∩ C0

t C
2
x(Ω×[0, T ] \ Iv).

Short-time existence of strong solutions in the precise sense of the previous definition may
in principle be established based on the results of Wilke [127] resp. Watanabe [125], which
in turn are based on a maximal Lpx-Lpt resp. Lqx-Lpt regularity approach (cf. [113], [104] and
[112] for further maximal Lqx-Lpt regularity results in the context of two-phase Navier–Stokes
flow with surface tension). In these works, the evolving interface is represented in terms of
the graph of a time-dependent height function over the initial interface, whereas the evolving
phase of one of the fluids is represented in terms of the associated Hanzawa transform.
However, it has to be said that the results of [127] and [125] are not immediately sufficient to
guarantee the required higher regularity of the interface and the fluid velocity from Definition 10
(in particular, the regularity up to time t = 0). One may expect that this higher regularity
can be derived along the lines of [45, Remark 7, Remark 36, and Remark 37], where for our
purposes next to the higher regularity of the fluid velocity from each side of the evolving
interface one also has to provide similar arguments near the domain boundary. Needless to say,
one has to be particularly careful in the vicinity of contact points or contact lines, for which
our mathematically idealized setting of pure slip and constant ninety degree contact angle
may prove beneficial (cf. the discussion in [107] or [50]). In summary, a detailed proof of the
required higher regularity is certainly worth a paper on its own and thus out of the scope of
this article.
We conclude the discussion on strong solutions with a series of remarks. First, by standard
arguments one may deduce from (2.38), the solenoidality of v, and the boundary condition (v ·
n∂Ω)|∂Ω = 0 that VIv = v ·nIv holds true along the interface Iv for the normal speed VIv of Iv
(oriented with respect to nIv). Second, as a consequence of the contact point condition (2.33)
it holds for all t ∈ [0, Ts)

ˆ
Iv(t)

HIv · η dS = −
ˆ
Iv(t)

(︂
Id−nIv(·, t) ⊗ nIv(·, t)

)︂
: ∇η dS

for all test fields η ∈ C∞(Ω;Rd) subject to ∇ · η = 0 and (η · n∂Ω)|∂Ω = 0. Third, note that
Definition 10 implies that all pairs of two distinct contact points at the initial time remain distinct
at all later times within a finite time horizon. This in fact is a consequence of the regularity of
the velocity field and the evolving interface. Indeed, denoting by t ↦→ c(t) ∈ Iv(t) ∩ ∂Ω resp.
t ↦→ ĉ(t) ∈ Iv(t) ∩ ∂Ω the trajectories of two distinct contact points, we may estimate the
time evolution of their squared distance α(t) := 1

2 |c(t)−ĉ(t)|2 by means of

d
dtα(t) =

(︂
c(t)−ĉ(t)

)︂
·
(︂
v(c(t), t)−v(ĉ(t), t)

)︂
≥ −2∥∇v∥L∞

x,t
α(t).

Using Gronwall’s Lemma, we can conclude that α(t) ≥ α(0) exp(−2∥∇v∥L∞
x,t
t).

Fourth, we remark that it actually suffices to require the compatibility conditions (2.33)
and (2.34) at the initial time t = 0 only. For later times t ∈ (0, T ], they are in fact
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consequences of the regularity of a strong solution, which can be seen as follows. For the sake
fo simplicity, consider the case d = 2. By means of the chain rule, the fact that v · n∂Ω = 0
along ∂Ω, and the formulas for ∇n∂Ω and ∇τ∂Ω from Lemma 19, we may rewrite the boundary
condition (µ(∇v + ∇vT) : n∂Ω ⊗ τ∂Ω) = 0 along ∂Ω as

H∂Ω(v · τ∂Ω) + (n∂Ω · ∇)(v · τ∂Ω) = 0 along ∂Ω,

which holds in particular at a contact point c(t) for any t ∈ [0, T ]. Then, since the quantities
|τ∂Ω · τIv | = |nIv · n∂Ω|, |τ∂Ω − nIv | , |n∂Ω + τIv | evaluated at a contact point can all be
bounded from above by √

1 − nIv · τ∂Ω, we may compute by adding zeros (see also the
formulas for ∇n∂Ω and ∇τ∂Ω as well as the expressions for d

dtτ∂Ω(c(t)) and d
dtnIv(c(t), t) from

Lemma 19 and Lemma 20, respectively)

d
dt [1 − nIv(c(t), t) · τ∂Ω(c(t))]

= −
(︂
(nIv · n∂Ω)((n∂Ω · ∇)(v · τ∂Ω) + (τIv · ∇)(v · nIv))

)︂⃓⃓⃓
(c(t),t)

= −
(︂
(nIv · n∂Ω)(∇v : (τ∂Ω − nIv) ⊗ n∂Ω + ∇v : nIv ⊗ (n∂Ω + τIv)

−HIv(v · τIv)(τ∂Ω · τIv))
)︂⃓⃓⃓

(c(t),t)

≤ C∥∇v∥L∞
x,t

[1 − nIv(c(t), t) · τ∂Ω(c(t))]

for some C > 0 and any t ∈ [0, T ]. From an application of a Gronwall-type argument and
the validity of the contact angle condition (2.33) at the initial time t = 0, we may conclude
that (2.33) is indeed satisfied for any t ∈ [0, T ]. The compatibility condition (2.34) in turn
follows from differentiating in time the angle condition (2.33) along a smooth trajectory
t ↦→ c(t) ∈ Iv(t) ∩ ∂Ω of a contact point, see for details the proof of Lemma 20.

We proceed with the notion of a varifold solution.

Definition 11 (Varifold solution in case of 90◦ contact angle condition). Let a surface
tension constant σ > 0, the densities and shear viscosity of the two fluids ρ±, µ > 0, a
finite time Tw > 0, a solenoidal initial velocity profile u0 ∈ L2(Ω;Rd), and an indicator
function χ0 ∈ BV(Ω) be given.

A triple (χu, u, V ) consisting of a velocity field u, an indicator function χu, and an oriented
varifold V with

u ∈ L2([0, Tw];H1(Ω;Rd)) ∩ L∞([0, Tw];L2(Ω;Rd)),
χu ∈ L∞([0, Tw]; BV(Ω; {0, 1})),
V ∈ L∞

w ([0, Tw]; M(Ω × Sd−1)),

is called a varifold solution to the free boundary problem for the Navier-Stokes equation for two
fluids with 90◦ contact angle and initial data (χ0, u0) if the following conditions are satisfied:

• The velocity field u has vanishing divergence ∇ · u = 0, its trace a vanishing normal
component on the boundary of the domain (u · n∂Ω)|∂Ω = 0, and the equation for the
momentum balance

ˆ
Ω
ρ(χu(·, T ))u(·, T ) · η(·, T ) dx−

ˆ
Ω
ρ(χ0))u0 · η(·, 0) dx
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2. Stability of two-phase fluid flow with ninety degree contact angle

=
ˆ T

0

ˆ
Ω
ρ(χu)u · ∂tη dx dt+

ˆ T

0

ˆ
Ω
ρ(χu)u⊗ u : ∇η dx dt (2.39)

−
ˆ T

0

ˆ
Ω
µ(∇u+ ∇uT) : ∇η dx dt

− σ

ˆ T

0

ˆ
Ω×Sd−1

(Id −s⊗ s) : ∇η dVt(x, s) dt

is satisfied for almost every T ∈ [0, Tw) and for every test vector field η subject to
η ∈ C∞([0, Tw);C1(Ω;Rd) ∩ ⋂︁

p≥2 W
2,p(Ω;Rd)), ∇ · η = 0 as well as (η · n∂Ω)|∂Ω = 0.

We again made use of the abbreviation ρ(χ) := ρ+χ+ ρ−(1 − χ).

• The indicator χu satisfies the weak formulation of the transport equationˆ
Ω
χu(·, T )φ(·, T ) dx−

ˆ
Ω
χ0φ(·, 0) dx =

ˆ T

0

ˆ
Ω
χu(∂tφ+(u · ∇)φ) dx dt (2.40)

for almost every T ∈ [0, Tw) and all φ ∈ C∞(Ω × [0, Tw)).

• The energy dissipation inequalityˆ
Ω

1
2ρ(χu(·, T ))|u(·, T )|2 dx+ σ|VT |Sd−1(Ω) +

ˆ T

0

ˆ
Ω

µ

2 |∇u+∇uT|2 dx dt

≤
ˆ

Ω

1
2ρ(χ0(·))|u0(·)|2 dx+ σ|∇χ0|(Ω) (2.41)

is satisfied for almost every T ∈ [0, Tw).

• The phase boundary ∂∗{χu(·, t) = 0} ∩ Ω and the varifold Vt satisfy the compatibility
condition ˆ

Ω×Sd−1
ψ(x) · s dVt(x, s) =

ˆ
Ω
ψ(x) · d∇χu(x, t) (2.42)

for almost every t ∈ [0, Tw) and every smooth function ψ ∈ C∞(Ω;Rd) such that
(ψ · n∂Ω)|∂Ω = 0.

Finally, if (χu, V ) satisfy (2.14) we call the pair (χu, u) a BV solution to the free boundary
problem for the Navier-Stokes equation for two fluids with 90◦ contact angle and initial data
(χ0, u0).

We conclude with a remark concerning the notion of varifold solutions. Denote by Vt ∈
M(Ω×Sd−1) the non-negative measure representing at time t ∈ [0, Tw) the varifold associated
to a varifold solution (χu, u, V ). The compatibility condition (2.42) entails that |∇χu(·, t)|⌞Ω
is absolutely continuous with respect to |Vt|Sd−1⌞Ω; in fact, |∇χu(·, t)|⌞Ω ≤ |Vt|Sd−1⌞Ω in the
sense of measures on Ω. Hence, we may define the Radon–Nikodym derivative

θt := d|∇χu(·, t)|⌞Ω
d|Vt|Sd−1⌞Ω , (2.43)

which is a (|Vt|Sd−1⌞Ω)-measurable function with |θt| ≤ 1 valid (|Vt|Sd−1⌞Ω)-almost everywhere
in Ω. In other words, the quantity 1

θt
represents the multiplicity of the varifold (in the interior).

With this notation in place, it then holdsˆ
Ω
f(x) d|∇χu(·, t)|(x) =

ˆ
Ω
θt(x)f(x) d|Vt|Sd−1(x) (2.44)

for every f ∈ L1(Ω, |∇χu(·, t)|) and almost every t ∈ [0, Tw).
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2.2.5 Summary of strategy
To summarize, the proof of our weak-strong uniqueness result (Theorem 1) is divided into
two parts. The first part is concerned with the derivation of Gronwall stability estimates (cf.
Proposition 4, Proposition 5 and Lemma 6) of the form

d
dtE[χu, u, V |χv, v] ≤ C(E[χu, u, V |χv, v] + Evol[χu|χv]),

d
dtEvol[χu|χv] ≤ C(E[χu, u, V |χv, v] + Evol[χu|χv]),

where E[χu, u, V |χv, v] and Evol[χu|χv] are two suitably constructed error functionals be-
tween a varifold (cf. Definition 11) and a strong solution (cf. Definition 10). The func-
tional E[χu, u, V |χv, v] has the form of a relative entropy and penalizes, amongst other things,
the error in the two velocity fields (cf. (2.29)) and the error in the locations of the two interfaces
(cf. (2.18)–(2.25)). The other functional Evol[χu|χv] in turn directly controls the difference
between the phase indicator functions of the respective first fluids of the two solutions (cf.
(2.31)). These coercivity properties are not only sufficient to establish the above Gronwall
estimates, but also that the two solutions have to coincide if both error functionals are zero.
The argument in the first part of the proof is conditional in the sense that both error
functionals rely on suitable inputs which have to be constructed from the strong solution. More
precisely, the interfacial part of the relative entropy E[χu, u, V |χv, v] is defined in terms of a
suitable extension ξ of the interface unit normal nIv of the strong solution (cf. Definition 2),
whereas Evol[χu|χv] is defined based on a suitable weight ϑ essentially representing a truncated
signed distance function with respect to the phase of the first fluid of the strong solution (cf.
Definition 3). Once these two inputs are rigorously constructed, one may infer our main result
Theorem 1 from the corresponding conditional one of Proposition 4.
The second part of the proof therefore takes care of establishing the existence of such ξ and ϑ
for strong solutions (cf. Proposition 7 and Lemma 8). In the following, we provide some
comments on the construction of the former (which is the more challenging task). Away from
the domain boundary, and therefore in particular away from contact points, one may simply
follow the ansatz from [45] which is

ξ(x, t) := ηIv(sdist(x, Iv(t)))nIv(PIv(x, t), t), (2.45)

where ηIv is a quadratic cutoff localizing to the width of a regular tubular neighborhood of
the interface Iv(t), sdist(·, Iv(t)) denotes the signed distance to Iv(t), and PIv(·, t) represents
the nearest point projection onto Iv(t).
Near contact points ∂Iv(t), the above ansatz (2.45) requires a careful adaptation because one
of the main requirements for ξ is to be tangential along the domain boundary: (ξ ·n∂Ω)|∂Ω ≡ 0.
To achieve this, it is first easiest to think about fixing the values of ξ along either the
interface Iv or the domain boundary ∂Ω:

ξ(x, t) := η∂Iv(t)(x, t)˜︁ξ Iv(x, t), ˜︁ξ Iv(x, t) = nIv(x, t) along Iv(t),
ξ(x, t) := η∂Iv(t)(x, t)˜︁ξ ∂Ω(x, t), ˜︁ξ ∂Ω(x, t) = τ∂Ω(x, t) along ∂Ω,

where η∂Iv(t) is a quadratic cutoff localizing to a neighborhood of the contact points ∂Iv(t),
and where τ∂Ω(·, t) is a tangent vector field along ∂Ω extending locally for each contact
point c ∈ ∂Iv(t) the normal nIv(c, t). Due to the 90◦ degree contact angle condition, this is
indeed meaningful and guarantees continuity of ξ along Iv(t) ∪ ∂Ω.
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Now, in order to define ξ in a full neighborhood of the contact points ∂Iv(t), the basic idea is
to interpolate between the two auxiliary fields ˜︁ξ Iv and ˜︁ξ ∂Ω. However, some care has to be
taken here due to the required regularity of ξ. This is the reason why we employ an expansion
ansatz for both ˜︁ξ Iv and ˜︁ξ ∂Ω of the structure

˜︁ξ Iv := nIv + αIv sdist(·, Iv)τIv − 1
2α

2
Iv

sdist2(·, Iv)nIv ,

˜︁ξ ∂Ω := τ∂Ω + α∂Ω sdist(·, ∂Ω)n∂Ω − 1
2α

2
∂Ω sdist2(·, ∂Ω)τ∂Ω,

where the normal-tangent frames (nIv , τIv) and (n∂Ω, τ∂Ω) as well as the coefficients αIv

and α∂Ω are extended constantly in the respective normal directions. The point then is to
choose the coefficients in a suitable way such that ∇˜︁ξ Iv and ∇˜︁ξ ∂Ω agree at contact points.
With this in place, one may then interpolate between the two constructions so that the resulting
vector field ξ satisfies the required regularity. The second-order terms in the above expansions
are only needed for a length correction of the first-order perturbations. We finally remark
that controlling the time evolution of the interpolation construction requires the higher-order
compatibility condition at contact points following from differentiating in time the 90◦ contact
angle condition.
With the constructions of suitable candidates for ξ in place, one technical problem remains.
Namely, the domains of definition for the above two outlined constructions away and near
contact points overlap. The solution for this technicality consists of carefully designing the
quadratic cutoff functions ηIv and η∂Iv so that they form on one hand a partition of unity
along the interface of the strong solution, and that they on the other hand get transported
along the fluid flow. Once this is established, the construction of ξ is finished.
In terms of organization, the remaining parts of the chapter are structured as follows. The
first part of the proof as outlined above is conducted in Section 2.3. The construction of the
vector field ξ, which is the main step of the second part of the proof, is distributed across
Section 2.4 (construction away from contact points), Section 2.5 (construction near contact
points) and Section 2.6 (global construction by partition of unity). We conclude the paper
with the construction of the weight ϑ in Section 2.7.

2.2.6 Notation
Throughout the present work, we employ the notational conventions of [45]. A notable addition
is the following convention. If D ⊂ Rd is an open subset and Γ ⊂ D a closed subset of
Hausdorff-dimension k ∈ {0, . . . , d−1}, we write Ck(D \ Γ) for all maps f : D → R which
are k-times continuously differentiable throughout D \ Γ such that the function together
with all its derivatives stays bounded throughout D \ Γ. Analogously, one defines the space
Ck
t C

m
x (D \ Γ) for D = ⋃︁

t∈[0,T ] D(t) × {t} and Γ = ⋃︁
t∈[0,T ] Γ(t) × {t}, where (D(t))t∈[0,T ] is

a family of open subsets of Rd and (Γ(t))t∈[0,T ] is a family of closed subsets Γ(t) ⊂ D(t) of
constant Hausdorff-dimension k ∈ {0, . . . , d−1}.

2.3 Proof of main results
2.3.1 Relative entropy inequality: Proof of Proposition 5
The general structure of the proof is in parts similar to the proof of [45, Proposition 10]. In
what follows, we thus mainly focus on how to exploit the boundary conditions for the velocity
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fields (u, v) and a boundary adapted extension ξ of the strong interface unit normal in these
computations.
Step 1: Since ρ(χv) is an affine function of χv, it consequently satisfies
ˆ

Ω
ρ(χv(·, T ′))φ(·, T ′) dx−

ˆ
Ω
ρ(χ0

v)φ(·, 0) dx =
ˆ T

0

ˆ
Ω
ρ(χv)(∂tφ+(v ·∇)φ) dx dt (2.46)

for almost every T ′ ∈ [0, T ] and all φ ∈ C∞(Ω × [0, T ]). By the regularity of v and an
approximation argument, we may test this equation with v · η for any η ∈ C∞(Ω × [0, T ];Rd),
yielding

ˆ
Ω
ρ(χv(·, T ′))v(·, T ′) · η(·, T ′) dx−

ˆ
Ω
ρ(χ0

v)v(·, 0) · η(·, 0) dx

=
ˆ T ′

0

ˆ
Ω
ρ(χv)(v · ∂tη + η · ∂tv) dx dt (2.47)

+
ˆ T ′

0

ˆ
Ω
ρ(χv)(η · (v · ∇)v + v · (v · ∇)η) dx dt

for almost every T ′ ∈ [0, T ]. Next, we subtract from (2.47) the equation for the momentum
balance (2.37) of the strong solution. It follows that the velocity field v of the strong solution
satisfies

0 =
ˆ T ′

0

ˆ
Ω
ρ(χv)η · ∂tv dx dt+

ˆ T ′

0

ˆ
Ω
ρ(χv)η · (v · ∇)v dx dt (2.48)

+
ˆ T ′

0

ˆ
Ω
µ(∇v + ∇vT ) : ∇η dx dt− σ

ˆ T ′

0

ˆ
Iv(t)

HIv · η dS dt

for almost every T ′ ∈ [0, T ] and every test vector field η ∈ C∞(Ω × [0, T ];Rd) such that
∇·η = 0 and (η ·n∂Ω)|∂Ω = 0. For any such test vector field η, note that by means of (2.16c),
the incompressibility of η as well as (η · n∂Ω)|∂Ω = 0, we may rewrite

−σ
ˆ T ′

0

ˆ
Iv(t)

HIv · η dS dt = σ

ˆ T ′

0

ˆ
Iv(t)

(∇ · ξ)η · nIv dS dt

= −σ
ˆ T ′

0

ˆ
Ω
χv(η · ∇)(∇ · ξ) dx dt. (2.49)

Hence, we deduce from inserting (2.49) back into (2.48) that

0 =
ˆ T ′

0

ˆ
Ω
ρ(χv)η · ∂tv dx dt+

ˆ T ′

0

ˆ
Ω
ρ(χv)η · (v · ∇)v dx dt (2.50)

+
ˆ T ′

0

ˆ
Ω
µ(∇v + ∇vT ) : ∇η dx dt− σ

ˆ T ′

0

ˆ
Ω
χv(η · ∇)(∇ · ξ) dx dt

for almost every T ′ ∈ [0, T ] and every test vector field η ∈ C∞(Ω × [0, T ];Rd) such that
∇ · η = 0 and (η · n∂Ω)|∂Ω = 0. The merit of rewriting (2.48) into the form (2.50) consists
of the following observation. Consider a test vector field η ∈ C∞([0, T ];H1(Ω;Rd)) such
that ∇ · η = 0 and (η · n∂Ω)|∂Ω = 0. Denoting by ψ a standard mollifier, for every k ∈ N
by ψk := kdψ(k·) its usual rescaling, and by PΩ the Helmholtz projection associated with
the smooth domain Ω, it follows from standard theory (e.g., by a combination of [116] and
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standard Wm,2(Ω)-elliptic regularity theory – see also Section 2.8) that ηk := PΩ(ψk ∗ η) is
an admissible test vector field for (2.50). Moreover, taking the limit k → ∞ in (2.50) with ηk
as test vector fields is admissible and results in

0 =
ˆ T ′

0

ˆ
Ω
ρ(χv)η · ∂tv dx dt+

ˆ T ′

0

ˆ
Ω
ρ(χv)η · (v · ∇)v dx dt (2.51)

+
ˆ T ′

0

ˆ
Ω
µ(∇v + ∇vT ) : ∇η dx dt− σ

ˆ T ′

0

ˆ
Ω
χv(η · ∇)(∇ · ξ) dx dt

for almost every T ′ ∈ [0, T ] and every test vector field η ∈ C∞([0, T ];H1(Ω;Rd)) such that
∇ · η = 0 and (η · n∂Ω)|∂Ω = 0. As an important consequence, because of the boundary
condition for the velocity fields (u, v) and their solenoidality, we may choose (after performing
a mollification argument in the time variable) η = u − v as a test function in (2.51) which
entails for almost every T ′ ∈ [0, T ]

0 =
ˆ T ′

0

ˆ
Ω
ρ(χv)(u− v) · ∂tv dx dt+

ˆ T ′

0

ˆ
Ω
ρ(χv)(u− v) · (v · ∇)v dx dt (2.52)

+
ˆ T ′

0

ˆ
Ω
µ(∇v+∇vT) : ∇(u−v) dx dt− σ

ˆ T ′

0

ˆ
Ω
χv((u−v) · ∇)(∇ · ξ) dx dt.

We proceed by testing the analogue of (2.46) for the phase-dependent density ρ(χu) with the
test function 1

2 |v|2, obtaining for almost every T ′ ∈ [0, T ]
ˆ

Ω

1
2ρ(χu(·, T

′))|v(·, T ′)|2 dx−
ˆ

Ω

1
2ρ(χ

0
u)|v0(·)|2 dx

=
ˆ T ′

0

ˆ
Ω
ρ(χu)v · ∂tv dx dt+

ˆ T ′

0

ˆ
Ω
ρ(χu)v · (u · ∇)v dx dt. (2.53)

We next want to test (2.39) with the fluid velocity v. Modulo a mollification argument in the
time variable, we have to argue that ∇v does not jump across the interface so that v is an
admissible test function. Indeed, since the tangential derivative (τIv · ∇)v is continuous across
the interface it follows from ∇ · v = 0 that also nIv · (nIv · ∇)v does not jump across Iv. The
only component which may jump is thus τIv · (nIv · ∇)v. However, this is ruled out by the
equilibrium condition for the stresses along Iv together with having µ+ = µ−. In summary,
using v in (2.39) implies

−
ˆ

Ω
ρ(χu(·, T ′))u(·, T ′) · v(·, T ′) dx+

ˆ
Ω
ρ(χ0

u))u0 · v0(·) dx

−
ˆ T ′

0

ˆ
Ω
µ(∇u+ ∇uT) : ∇v dx dt

= −
ˆ T ′

0

ˆ
Ω
ρ(χu)u · ∂tv dx dt−

ˆ T ′

0

ˆ
Ω
ρ(χu)u · (u · ∇)v dx dt (2.54)

+ σ

ˆ T ′

0

ˆ
Ω×Sd−1

(Id −s⊗ s) : ∇v dVt(x, s) dt

for almost every T ′ ∈ [0, T ]. We finally use σ(∇ · ξ) as a test function in the transport
equation (2.40) for the indicator function χu of the varifold solution. Hence, we obtain

σ

ˆ
Ω
χu(·, T ′)(∇ · ξ)(·, T ′) dx−

ˆ
Ω
χ0
u(∇ · ξ)(·, 0) dx
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= σ

ˆ T ′

0

ˆ
Ω
χu(∇ · ∂tξ + (u · ∇)(∇ · ξ)) dx dt.

for almost every T ′ ∈ [0, T ]. Based on the boundary condition (2.16b), which in turn in
particular implies (∂tξ · n∂Ω)|∂Ω = ∂t(ξ · n∂Ω)|∂Ω = 0, we may integrate by parts to upgrade
the previous display to

− σ

ˆ
Ω
nu(·, T ′) · ξ(·, T ′) d|∇χu(·, T )| +

ˆ
Ω
n0
u · ξ(·, 0) d|∇χu(·, 0)|

= −σ
ˆ T ′

0

ˆ
Ω
nu · ∂tξ d|∇χu| dt+ σ

ˆ T ′

0

ˆ
Ω
χu(u · ∇)(∇ · ξ) dx dt (2.55)

for almost every T ′ ∈ [0, T ].
Step 2: Summing (2.52), (2.53), (2.41) as well as (2.54), we obtain

LHSkin(T ′) + LHSvisc + LHSsurEn(T ′)
≤ RHSkin(0) + RHSsurEn(0) + RHSdt +RHSadv +RHSsurTen, (2.56)

where the individual terms are given by (cf. the proof of [45, Proposition 10])

LHSkin(T ′) :=
ˆ

Ω

1
2ρ(χu(·, T

′))|u−v|2(·, T ′) dx, (2.57)

RHSkin(0) :=
ˆ

Ω

1
2ρ(χ

0
u)|u0 − v0|2 dx, (2.58)

LHSsurEn(T ′) := σ|∇χu(·, T ′)|(Ω) + σ

ˆ
Ω
(1 − θT ′) d|VT ′ |Sd−1(x), (2.59)

RHSsurEn(0) := σ|∇χ0
u(·)|(Ω), (2.60)

LHSvisc :=
ˆ T ′

0

ˆ
Ω

µ

2 |∇(u− v) + ∇(u− v)T|2 dx dt, (2.61)

RHSdt := −
ˆ T ′

0

ˆ
Ω
(ρ(χv) − ρ(χu))(u− v) · ∂tv dx dt, (2.62)

RHSadv := −
ˆ T ′

0

ˆ
Ω
(ρ(χu) − ρ(χv))(u− v) · (v · ∇)v dx dt (2.63)

−
ˆ T ′

0

ˆ
Ω
ρ(χu)(u− v) · ((u− v) · ∇)v dx dt,

RHSsurTen := −σ
ˆ T ′

0

ˆ
Ω
χv((u−v) · ∇)(∇ · ξ) dx dt (2.64)

+ σ

ˆ T ′

0

ˆ
Ω×Sd−1

(Id −s⊗ s) : ∇v dVt(x, s) dt.

Adding zeros, ∇·v = 0, the boundary condition n∂Ω ·(∇v+(∇v)T)ξ = n∂Ω ·(∇v+(∇v)T)(Id−
n∂Ω ⊗ n∂Ω)ξ = 0 due to (2.36) and (2.16b), and the compatibility condition (2.42) allow to
rewrite the second term of (2.64) as follows

σ

ˆ T ′

0

ˆ
Ω×Sd−1

(Id −s⊗ s) : ∇v dVt(x, s) dt

= − σ

ˆ T ′

0

ˆ
Ω×Sd−1

(s− ξ) · ((s− ξ) · ∇)v dVt(x, s) dt
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− σ

ˆ T ′

0

ˆ
Ω×Sd−1

s · (∇v + (∇v)T)ξ dVt(x, s) dt

+ σ

ˆ T ′

0

ˆ
Ω×Sd−1

ξ · (ξ · ∇)v dVt(x, s) dt

= − σ

ˆ T ′

0

ˆ
Ω×Sd−1

(s− ξ) · ((s− ξ) · ∇)v dVt(x, s) dt (2.65)

− σ

ˆ T ′

0

ˆ
Ω
ξ · (nu · ∇)v d|∇χu| dt− σ

ˆ T ′

0

ˆ
Ω
nu · (ξ · ∇)v d|∇χu| dt

+ σ

ˆ T ′

0

ˆ
Ω
ξ · (ξ · ∇)v d|Vt|Sd−1 dt.

Furthermore, because of (2.44) we obtain

σ

ˆ T ′

0

ˆ
Ω
ξ · (ξ · ∇)v d|Vt|Sd−1 dt (2.66)

= σ

ˆ T ′

0

ˆ
Ω
(1−θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt+ σ

ˆ T ′

0

ˆ
Ω
θtξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

ˆ T ′

0

ˆ
∂Ω
ξ · (ξ · ∇)v d|Vt|Sd−1 dt

= σ

ˆ T ′

0

ˆ
Ω
(1 − θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt+ σ

ˆ T ′

0

ˆ
Ω
ξ · (ξ · ∇)v d|∇χu| dt

+ σ

ˆ T ′

0

ˆ
∂Ω
ξ · (ξ · ∇)v d|Vt|Sd−1 dt.

The combination of (2.64), (2.65) and (2.66) together with ∇ · v = 0 then implies

RHSsurTen = − σ

ˆ T ′

0

ˆ
Ω×Sd−1

(s− ξ) · ((s− ξ) · ∇)v dVt(x, s) dt (2.67)

+ σ

ˆ T ′

0

ˆ
Ω
(1 − θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

ˆ T ′

0

ˆ
∂Ω
ξ · (ξ · ∇)v d|Vt|Sd−1 dt

− σ

ˆ T ′

0

ˆ
Ω
χv((u− v) · ∇)(∇ · ξ) dx dt

− σ

ˆ T ′

0

ˆ
Ω
ξ · ((nu − ξ) · ∇)v d|∇χu| dt

− σ

ˆ T ′

0

ˆ
Ω
(nu − ξ) · (ξ · ∇)v d|∇χu| dt

+ σ

ˆ T ′

0

ˆ
Ω
(Id −ξ ⊗ ξ) : ∇v d|∇χu| dt.

In summary, plugging back (2.57)–(2.63) and (2.67) into (2.56), and then summing (2.55) to
the resulting inequality yields in view of the definition (2.29) of the relative entropy

E[χu, u, V |χv, v](T ′) +
ˆ T ′

0

ˆ
Ω

µ

2 |∇(u− v) + ∇(u− v)T|2 dx dt
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≤ E[χu, u, V |χv, v](0) + Rdt +Radv +R
(1)
surTen +R

(2)
surTen (2.68)

for almost every T ′ ∈ [0, T ], where in addition to the notation of Proposition 5 we also defined
the two auxiliary quantities

R
(1)
surTen := −σ

ˆ T ′

0

ˆ
Ω×Sd−1

(s− ξ) · ((s− ξ) · ∇)v dVt(x, s) dt (2.69)

+ σ

ˆ T ′

0

ˆ
Ω
(1 − θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

ˆ T ′

0

ˆ
∂Ω
ξ · (ξ · ∇)v d|Vt|Sd−1 dt,

R
(2)
surTen := σ

ˆ T

0

ˆ
Ω
χu(u · ∇)(∇ · ξ) dx dt (2.70)

− σ

ˆ T ′

0

ˆ
Ω
χv((u−v) · ∇)(∇ · ξ) dx dt

− σ

ˆ T ′

0

ˆ
Ω
ξ · ((nu − ξ) · ∇)v d|∇χu| dt

− σ

ˆ T ′

0

ˆ
Ω
(nu − ξ) · (ξ · ∇)v d|∇χu| dt

+ σ

ˆ T ′

0

ˆ
Ω
(Id −ξ ⊗ ξ) : ∇v d|∇χu| dt

− σ

ˆ T ′

0

ˆ
Ω
nu · ∂tξ d|∇χu| dt.

The remainder of the proof is concerned with the post-processing of the term R
(2)
surTen.

Step 3: By adding zeros, we can rewrite the last right hand side term of (2.70) as

− σ

ˆ T ′

0

ˆ
Ω
nu · ∂tξ d|∇χu| dt

= −σ
ˆ T ′

0

ˆ
Ω
(nu−ξ) · (∂tξ+(v · ∇)ξ+(Id−ξ ⊗ ξ)(∇v)Tξ) d|∇χu| dt (2.71)

− σ

ˆ T ′

0

ˆ
Ω
((nu − ξ) · ξ)(ξ ⊗ ξ : ∇v) d|∇χu| dt

− σ

ˆ T ′

0

ˆ
Ω

(︃
∂t

1
2 |ξ|2 + (v · ∇)1

2 |ξ|2
)︃

d|∇χu| dt

+ σ

ˆ T ′

0

ˆ
Ω
ξ ⊗ (nu − ξ) : ∇v d|∇χu| dt

+ σ

ˆ T ′

0

ˆ
Ω
nu · ((v · ∇)ξ) d|∇χu| dt.

We proceed by manipulating the last term in the latter identity. To this end, we compute
applying the product rule in the first step and then adding zero

σ

ˆ T ′

0

ˆ
Ω
nu · ((v · ∇)ξ) d|∇χu| dt
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= σ

ˆ T ′

0

ˆ
Ω
nu · (∇ · (ξ ⊗ v)) d|∇χu| dt (2.72)

+ σ

ˆ T ′

0

ˆ
Ω
(1 − nu · ξ)(∇ · v) d|∇χu| dt− σ

ˆ T ′

0

ˆ
Ω

Id : ∇v d|∇χu| dt.

Noting that for symmetry reasons ∇ · (∇ · (ξ⊗ v)) = ∇ · (∇ · (v⊗ ξ)), an integration by parts
based on the boundary conditions (2.16b) and (v · n∂Ω)|∂Ω = 0 entails

σ

ˆ T ′

0

ˆ
Ω
nu · (∇ · (ξ ⊗ v)) d|∇χu| dt

= − σ

ˆ T ′

0

ˆ
Ω
χu∇ · (∇ · (v ⊗ ξ)) dx dt− σ

ˆ T ′

0

ˆ
∂Ω
χu(n∂Ω ⊗ v : ∇ξ) dS dt

= σ

ˆ T ′

0

ˆ
Ω
nu · (∇ · (v ⊗ ξ)) d|∇χu| dt

+ σ

ˆ T ′

0

ˆ
∂Ω
χu(n∂Ω · ((ξ · ∇)v − (v · ∇)ξ)) dS dt.

We next observe that the last right hand side term of the previous display is zero. Indeed,
note first that thanks to the boundary conditions (2.16b) and (v · n∂Ω)|∂Ω = 0 the involved
gradients are in fact tangential gradients along ∂Ω. Since the tangential gradient of a function
only depends on its definition along the manifold, we are free to substitute (ξ · τ∂Ω)τ∂Ω for ξ
resp. (v · τ∂Ω)τ∂Ω for v, obtaining in the process

ˆ T ′

0

ˆ
∂Ω
χu(n∂Ω · ((ξ · ∇)v − (v · ∇)ξ)) dS dt

=
ˆ T ′

0

ˆ
∂Ω
χu[(ξ · ∇)(v · τ∂Ω) − (v · ∇)(ξ · τ∂Ω)](τ∂Ω · n∂Ω) dS dt

+
ˆ T ′

0

ˆ
∂Ω
χu[((v · τ∂Ω)ξ − (ξ · τ∂Ω)v) · ∇)τ∂Ω] · n∂Ω dS dt = 0.

The combination of the previous two displays together with an integration by parts and an
application of the product rule thus yields

σ

ˆ T ′

0

ˆ
Ω
nu · (∇ · (ξ ⊗ v)) d|∇χu| dt

= σ

ˆ T ′

0

ˆ
Ω
(nu · v)(∇ · ξ) d|∇χu| dt+ σ

ˆ T ′

0

ˆ
Ω
nu ⊗ ξ : ∇v d|∇χu| dt.

By another integration by parts, relying in the process also on ∇ · v = 0 and (v · n∂Ω)|∂Ω = 0,
we may proceed computing

σ

ˆ T ′

0

ˆ
Ω
nu · (∇ · (ξ ⊗ v)) d|∇χu| dt

= − σ

ˆ T ′

0

ˆ
Ω
χu∇ · (v(∇ · ξ)) dx dt+ σ

ˆ T ′

0

ˆ
Ω
nu ⊗ ξ : ∇v d|∇χu| dt

= − σ

ˆ T ′

0

ˆ
Ω
χu(v · ∇)(∇ · ξ) dx dt+ σ

ˆ T ′

0

ˆ
Ω
nu ⊗ ξ : ∇v d|∇χu| dt. (2.73)
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In summary, taking together (2.71)–(2.73) and adding for a last time zero yields

−σ
ˆ T ′

0

ˆ
Ω
nu · ∂tξ d|∇χu| dt

= − σ

ˆ T ′

0

ˆ
Ω
χu(v · ∇)(∇ · ξ) dx dt (2.74)

− σ

ˆ T ′

0

ˆ
Ω
(nu−ξ) · (∂tξ+(v · ∇)ξ+(Id−ξ ⊗ ξ)(∇v)Tξ) d|∇χu| dt

− σ

ˆ T ′

0

ˆ
Ω
((nu − ξ) · ξ)(ξ ⊗ ξ : ∇v) d|∇χu| dt

− σ

ˆ T ′

0

ˆ
Ω

(︃
∂t

1
2 |ξ|2 + (v · ∇)1

2 |ξ|2
)︃

d|∇χu| dt

+ σ

ˆ T ′

0

ˆ
Ω
(1 − nu · ξ)(∇ · v) d|∇χu| dt

+ σ

ˆ T ′

0

ˆ
Ω
(nu − ξ) ⊗ ξ : ∇v d|∇χu| dt+ σ

ˆ T ′

0

ˆ
Ω
ξ ⊗ (nu − ξ) : ∇v d|∇χu| dt

− σ

ˆ T ′

0

ˆ
Ω
(Id −ξ ⊗ ξ) : ∇v d|∇χu| dt.

Inserting (2.74) into (2.70) then implies that R(1)
surTen + R

(2)
surTen combines to the desired

term RsurTen. In particular, the estimate (2.68) upgrades to (2.30) as asserted.

2.3.2 Time evolution of the bulk error: Proof of Lemma 6
Note that the sign conditions for the transported weight ϑ, see Definition 3, ensure that

Evol[χu|χv](t) =
ˆ

Ω

(︂
χu(·, t) − χv(·, t)

)︂
ϑ(·, t) dx

for all t ∈ [0, T ]. Hence, as a consequence of the transport equations for χv and χu (see
Definition 10 and Definition 11, respectively) one obtains

Evol[χu|χv](T ′) = Evol[χu|χv](0) (2.75)

+
ˆ T ′

0

ˆ
Ω
(χu−χv)∂tϑ dx dt+

ˆ T ′

0

ˆ
Ω
(χuu−χvv) · ∇ϑ dx dt

for almost every T ′ ∈ [0, T ]. Note that for any sufficiently regular solenoidal vector field F
with (F · n∂Ω)|∂Ω = 0, since ϑ = 0 along Iv (see Definition 3), an integration by parts yields

ˆ
Ω
χv(F · ∇)ϑ dx = 0. (2.76)

Adding zero in (2.75) and making use of (2.76) with respect to the choices F = u and F = v

in form of
´

Ω χv
(︂
(u−v) · ∇

)︂
ϑ dx = 0 then updates (2.75) to (2.32). This concludes the proof

of Lemma 6.
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2.3.3 Conditional weak-strong uniqueness: Proof of Proposition 4
Starting point for a proof of the conditional weak-strong uniqueness principle is the following
important coercivity estimate (cf. [45, Lemma 20]).

Lemma 12. Let the assumptions and notation of Proposition 4 be in place. Then there exists
a constant C = C(χv, v, T ) > 0 such that for all δ ∈ (0, 1] it holds

ˆ T ′

0

ˆ
Ω

|χv−χu||u−v| dx dt ≤ C

δ

ˆ T ′

0
E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt

+ δ

ˆ T ′

0

ˆ
Ω

|∇u− ∇v|2 dx dt (2.77)

for all T ′ ∈ [0, T ].

Proof. It turns out to be convenient to introduce a decomposition of the interface Iv into its
topological features: the connected components of Iv ∩ Ω and the connected components
of Iv ∩ ∂Ω. Let N ∈ N denote the total number of such topological features of Iv, and
split {1, . . . , N} =: I ·∪ C as follows. The subset I enumerates the space-time connected
components of Iv ∩ Ω (being time-evolving connected interfaces), whereas the subset C
enumerates the space-time connected components of Iv ∩ ∂Ω (being time-evolving contact
points if d = 2, or time-evolving connected contact lines if d = 3). If i ∈ I, we let Ti denote
the space-time trajectory in Ω of the corresponding connected interface. Furthermore, for
every c ∈ C we write Tc representing the space-time trajectory in ∂Ω of the corresponding
contact point (if d = 2) or line (if d = 3). Finally, let us write i ∼ c for i ∈ I and c ∈ C if
and only if Ti ends at Tc. With this language and notation in place, the proof is now split into
five steps.
Step 1: (Choice of a suitable localization scale) Denote by n∂Ω the unit normal vector field of
∂Ω pointing into Ω, and by nIv(·, t) the unit normal vector field of Iv(t) pointing into Ωv(t).
Because of the uniform C2

x regularity of the boundary ∂Ω and the uniform CtC
2
x regularity of

the interface Iv(t), t ∈ [0, T ], we may choose a scale r ∈ (0, 1
2 ] such that for all t ∈ [0, T ] and

all i ∈ I the maps

Ψ∂Ω : ∂Ω × (−3r, 3r) → Rd, (x, y) ↦→ x+ yn∂Ω(x), (2.78)
ΨTi(t) : Ti(t) × (−3r, 3r) → Rd, (x, y) ↦→ x+ ynIv(x, t) (2.79)

are C1 diffeomorphisms onto their image. By uniform regularity of ∂Ω and Iv (the latter in
space-time), we have bounds

sup
∂Ω×[−r,r]

|∇Ψ∂Ω| ≤ C, sup
Ψ∂Ω(∂Ω×[−r,r])

|∇Ψ−1
∂Ω| ≤ C, (2.80)

sup
t∈[0,T ]

sup
Ti(t)×[−r,r]

|∇ΨTi(t)| ≤ C, sup
t∈[0,T ]

sup
ΨTi(t)(Ti(t)×[−r,r])

|∇Ψ−1
Ti(t)| ≤ C (2.81)

for all i ∈ I. By possibly choosing r ∈ (0, 1
2 ] even smaller, we may also guarantee that for all

t ∈ [0, T ] and all i ∈ I it holds

ΨTi(t)(Ti(t)×[−r, r]) ∩ ΨTi′ (t)(Ti′(t)×[−r, r]) = ∅ for all i′ ∈ I, i′ ̸= i, (2.82)
ΨTi(t)(Ti(t)×[−r, r]) ∩ Ψ∂Ω(∂Ω×[−r, r]) ̸= ∅ ⇔ ∃c ∈ C : i ∼ c, (2.83)
ΨTi(t)(Ti(t)×[−r, r]) ∩ Ψ∂Ω(∂Ω×[−r, r]) ⊂ B2r(Tc(t)) if ∃c ∈ C : i ∼ c (2.84)
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B2r(Tc(t)) ∩ B2r(Tc′(t)) = ∅ for all c, c′ ∈ C, c′ ̸= c. (2.85)

Note finally that because of the 90◦ contact angle condition and by possibly choosing r ∈ (0, 1
2 ]

even smaller, we can furthermore ensure that

Ω \
(︃

Ψ∂Ω(∂Ω×[−r, r]) ∪
⋃︂
i∈I

ΨTi(t)(Ti(t)×[−r, r])
)︃

⊂ Ω ∩ {x ∈ Rd : dist(x, ∂Ω) ∧ dist(x, Iv(t)) > r}
(2.86)

for all t ∈ [0, T ]. Indeed, for x ∈ Ω \
(︂
Ψ∂Ω(∂Ω×[−r, r]) ∪ ⋃︁

i∈I ΨTi(t)(Ti(t)×[−r, r])
)︂

it follows that dist(x, ∂Ω) > r. In case the interface Iv(t) intersects ∂Ω it may not be
immediately clear that also dist(x, Iv(t)) > r holds true. Assume there exists a point
x ∈ Ω \

(︂
Ψ∂Ω(∂Ω×[−r, r]) ∪ ⋃︁i∈I ΨTi(t)(Ti(t)×[−r, r])

)︂
such that dist(x, Iv(t)) ≤ r. Then

necessarily x ∈ (Ω ∩ Br(c(t))) \ ⋃︁i∈I ΨTi(t)(Ti(t)×[−r, r]) for some boundary point c(t) ∈
∂Ω ∩ Iv(t). Hence, because of the uniform C2

x regularity of ∂Ω and Iv(t) intersecting ∂Ω at
an angle of 90◦, one may choose r ∈ (0, 1

2 ] small enough such that x ∈ (Ω ∩Br(c(t))) implies
dist(x, ∂Ω) ≤ r. As we have already seen, this contradicts x ∈ Ω \ Ψ∂Ω(∂Ω×[−r, r]).
Step 2: (A reduction argument) We may estimate by a union bound and (2.86)

ˆ T ′

0

ˆ
Ω

|χv−χu||u−v| dx dt

≤
ˆ T ′

0

ˆ
Ω∩Ψ∂Ω(∂Ω×[−r,r])\

⋃︁
c∈C B2r(Tc(t))

|χv−χu||u−v| dx dt (2.87)

+
∑︂
i∈I

ˆ T ′

0

ˆ
Ω∩ΨTi(t)(Ti(t)×[−r,r])\

⋃︁
c∈C B2r(Tc(t))

|χv−χu||u−v| dx dt

+ C
∑︂
c∈C

ˆ T ′

0

ˆ
Ω∩B2r(Tc(t))

|χv−χu||u−v| dx dt

+
ˆ T ′

0

ˆ
Ω∩{dist(·,∂Ω)∧dist(·,Iv(t))>r}

|χv−χu||u−v| dx dt.

An application of Hölder’s inequality and Young’s inequality, the definition (2.29) of the
relative entropy functional, the coercivity estimate (2.27) for the transported weight, and the
definition (2.31) of the bulk error functional further imply

ˆ T ′

0

ˆ
Ω∩{dist(·,∂Ω)∧dist(·,Iv(t))>r}

|χv−χu||u−v| dx dt

≤ C

ˆ T ′

0

ˆ
Ω∩{dist(·,∂Ω)∧dist(·,Iv(t))>r}

|χv−χu| dx dt+ C

ˆ T ′

0
E[χu, u, V |χv, v](t) dt

≤ C

ˆ T ′

0
E[χu, u, V |χv, v](t) + Evol[χu, χv](t) dt.

Hence, it remains to estimate the first three terms on the right hand side of (2.87).
Step 3: (Estimate near the interface but away from contact points) First of all, because of
the localization properties (2.82)–(2.84) it holds for all i ∈ I

dist(·, Ti) = dist(·, ∂Ω) ∧ dist(·, Iv(t)) (2.88)
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in Ω ∩ ΨTi(t)(Ti(t)×[−r, r]) \ ⋃︁c∈C B2r(Tc(t)). Hence, the local interface error height as
measured in the direction of nIv on Ti

hTi
(x, t) :=

ˆ r

−r
|χu − χv|(ΨTi(t)(x, y), t) dy, x ∈ Ti(t), t ∈ [0, T ],

is, because of (2.88) and the coercivity estimate (2.27) of the transported weight ϑ, subject
to the estimate

h2
Ti

(x, t) ≤ C

ˆ r

−r
|χu − χv|(ΨTi(t)(x, y), t)y dy

≤ C

ˆ r

−r
|χu − χv|(ΨTi(t)(x, y), t)|ϑ|(ΨTi(t)(x, y), t) dy (2.89)

for all x ∈ Ti(t) \ ⋃︁c∈C B2r(Tc(t)), all t ∈ [0, T ] and all i ∈ I. Carrying out the slicing
argument of the proof of [45, Lemma 20] in Ω ∩ ΨTi(t)(Ti(t)×[−r, r]) \ ⋃︁c∈C B2r(Tc(t)) by
means of ΨTi(t), which is indeed admissible thanks to (2.79), (2.81) and (2.89), shows that
one obtains an estimate of required form

∑︂
i∈I

ˆ T ′

0

ˆ
Ω∩ΨTi(t)(Ti(t)×[−r,r])\

⋃︁
c∈C B2r(Tc(t))

|χv−χu||u−v| dx dt

≤ C

δ

ˆ T ′

0
E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt+ δ

ˆ T ′

0

ˆ
Ω

|∇u− ∇v|2 dx dt.

Step 4: (Estimate near the boundary of the domain but away from contact points) The
argument is similar to the one of the previous step, with the only major difference being that
the slicing argument of the proof of [45, Lemma 20] is now carried out in Ω∩Ψ∂Ω(∂Ω×[−r, r])\⋃︁
c∈C B2r(Tc(t)) by means of Ψ∂Ω. This in turn is facilitated by the following facts. First, the

localization properties (2.82)–(2.84) ensure

dist(·, ∂Ω) = dist(·, ∂Ω) ∧ dist(·, Iv(t)) (2.90)

in Ω ∩ Ψ∂Ω(∂Ω×[−r, r]) \ ⋃︁c∈C B2r(Tc(t)). Second, as a consequence of (2.90) and the
coercivity estimate (2.27) of the transported weight ϑ, the local interface error height as
measured in the direction of n∂Ω

h∂Ω(x, t) :=
ˆ r

−r
|χu − χv|(Ψ∂Ω(x, y), t) dy, x ∈ ∂Ω, t ∈ [0, T ],

satisfies the estimate

h2
∂Ω(x, t) ≤ C

ˆ r

−r
|χu − χv|(Ψ∂Ω(x, y), t)y dy

≤ C

ˆ r

−r
|χu − χv|(Ψ∂Ω(x, y), t)|ϑ|(Ψ∂Ω(x, y), t) dy. (2.91)

Hence, we obtain
ˆ T ′

0

ˆ
Ω∩Ψ∂Ω(∂Ω×[−r,r])\

⋃︁
c∈C B2r(Tc(t))

|χv−χu||u−v| dx dt
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≤ C

δ

ˆ T ′

0
E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt+ δ

ˆ T ′

0

ˆ
Ω

|∇u− ∇v|2 dx dt.

Step 5: (Estimate near contact points) Fix c ∈ C, and let i ∈ I denote the unique connected
interface Ti such that i ∼ c. Because of the regularity of ∂Ω, the regularity of Ti, and the 90◦

contact angle condition we may decompose the neighborhood Ω ∩ B2r(Tc(t))—by possibly
reducing the localization scale r ∈ (0, 1

2 ] even further—into three pairwise disjoint open sets
W∂Ω(t), WTi

(t) and W∂Ω∼Ti
(t) such that Ω ∩B2r(Tc(t)) \

(︂
W∂Ω(t) ∪WTi

(t) ∪W∂Ω∼Ti
(t)
)︂

is
an Hd null set and

dist(·, ∂Ω) = dist(·, ∂Ω) ∧ dist(·, Iv(t)) in W∂Ω(t), (2.92)
dist(·, Ti(t)) = dist(·, ∂Ω) ∧ dist(·, Iv(t)) in WTi

(t), (2.93)
dist(·, ∂Ω) ∼ dist(·, Ti(t)) ∼ dist(·, Iv(t)) in W∂Ω∼Ti

(t), (2.94)

as well as

W∂Ω(t) ⊂ Ψ∂Ω(∂Ω×(−3r, 3r)), (2.95)
WTi

(t) ⊂ ΨTi(t)(Ti(t)×(−3r, 3r)), (2.96)
W∂Ω∼Ti

(t) ⊂ Ψ∂Ω(∂Ω×(−3r, 3r)) ∩ ΨTi(t)(Ti(t)×(−3r, 3r)). (2.97)

(Up to a rigid motion, these sets can in fact be defined independent of t ∈ [0, T ].) Hence,
applying the argument of Step 3 based on (2.93) and (2.96) with respect to Ω ∩B2r(Tc(t)) ∩
WTi

(t), the argument of Step 4 based on (2.92) and (2.95) with respect to Ω ∩B2r(Tc(t)) ∩
W∂Ω(t), and either the argument of Step 3 or Step 4 based on (2.94) and (2.97) with respect
to Ω ∩ B2r(Tc(t)) ∩W∂Ω∼Ti

(t) entails

∑︂
c∈C

ˆ T ′

0

ˆ
Ω∩B2r(Tc(t))

|χv−χu||u−v| dx dt

≤ C

δ

ˆ T ′

0
E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt+ δ

ˆ T ′

0

ˆ
Ω

|∇u− ∇v|2 dx dt.

This in turn concludes the proof of Lemma 12.

Proof of Proposition 4. The proof proceeds in three steps.
Step 1: (Post-processing the relative entropy inequality (2.30)) It follows immediately from
the L∞

x,t-bound for ∂tv and ρ(χv) − ρ(χu) = (ρ+−ρ−)(χv−χu) that

|Rdt| ≤ C

ˆ T ′

0

ˆ
Ω

|χv−χu||u−v| dx dt (2.98)

for almost every T ′ ∈ [0, T ]. Furthermore, the L∞
t W

1,∞
x -bound for v, the definition (2.29)

of the relative entropy functional, and again the identity ρ(χv) − ρ(χu) = (ρ+−ρ−)(χv−χu)
imply that

|Radv| ≤ C

ˆ T ′

0

ˆ
Ω

|χv−χu||u−v| dx dt+ C

ˆ T ′

0
E[χu, u, V |χv, v](t) dt (2.99)

for almost every T ′ ∈ [0, T ]. For a bound on the interface contribution RsurTen, we rely
on the L∞

t W
1,∞
x -bound for v, the L∞

t W
2,∞
x -bound for ξ, the L∞

t W
1,∞
x -bound for B, the
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2. Stability of two-phase fluid flow with ninety degree contact angle

definition (2.29) of the relative entropy functional, as well as the estimates (2.16d) and (2.16e)
of a boundary adapted extension ξ of nIv to the effect that

|RsurTen| ≤ C

ˆ T ′

0

ˆ
Ω

|χv−χu||u−v| dx dt (2.100)

+ C

ˆ T ′

0

ˆ
Ω×Sd−1

|s− ξ|2 dVt(x, s) dt

+ C

ˆ T ′

0

ˆ
Ω

1 − θt d|Vt|Sd−1 dt

+ C

ˆ T ′

0

ˆ
∂Ω

1 d|Vt|Sd−1 dt

+ C

ˆ T ′

0

ˆ
Ω

|nu − ξ|2 d|∇χu| dt

+ C

ˆ T ′

0

ˆ
Ω

dist2(·, Iv) ∧ 1 d|∇χu| dt

+ C

ˆ T ′

0

ˆ
Ω

|ξ · (ξ − nu)| d|∇χu| dt

+ C

ˆ T ′

0
E[χu, u, V |χv, v](t) dt

for almost every T ′ ∈ [0, T ]. It follows from property (2.16a) of a boundary adapted extension ξ
and the trivial estimates |ξ · (ξ − nu)| ≤ (1−|ξ|2) + (1−nu · ξ) ≤ 2(1−|ξ|) + (1−nu · ξ) and
1 − |ξ| ≤ 1 − nu · ξ that

ˆ T ′

0

ˆ
Ω

dist2(·, Iv) ∧ 1 d|∇χu| dt+
ˆ T ′

0

ˆ
Ω

|ξ · (ξ − nu)| d|∇χu| dt (2.101)

≤ C

ˆ T ′

0
E[χu, u, V |χv, v](t) dt.

Moreover, the trivial estimate |nu − ξ|2 ≤ 2(1 − nu · ξ) implies
ˆ T ′

0

ˆ
Ω

|nu − ξ|2 d|∇χu| dt ≤ C

ˆ T ′

0
E[χu, u, V |χv, v](t) dt. (2.102)

Recall finally from (2.24) and (2.20) that
ˆ T ′

0

ˆ
Ω×Sd−1

|s− ξ|2 dVt(x, s) dt ≤ C

ˆ T ′

0
E[χu, u, V |χv, v](t) dt,

ˆ T ′

0

ˆ
Ω

1 − θt d|Vt|Sd−1 dt+
ˆ T ′

0

ˆ
∂Ω

1 d|Vt|Sd−1 dt ≤ C

ˆ T ′

0
E[χu, u, V |χv, v](t) dt.

(2.103)

By inserting back the estimates (2.98)–(2.103) into the relative entropy inequality (2.30),
then making use of the coercivity estimate (2.77) and Korn’s inequality, and finally carrying
out an absorption argument, it follows that there exist two constants c = c(χv, v, T ) > 0 and
C = C(χv, v, T ) > 0 such that for almost every T ′ ∈ [0, T ]

E[χu, u, V |χv, v](T ′) + c

ˆ T ′

0

ˆ
Ω

|∇(u−v) + ∇(u−v)T|2 dx dt
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≤ E[χu, u, V |χv, v](0) + C

ˆ T ′

0
E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt. (2.104)

Step 2: (Post-processing the identity (2.32)) By the L∞
t W

1,∞
x -bound for the transported

weight ϑ, the estimate (2.28) on the advective derivative of the transported weight ϑ, and the
definition (2.31) of the bulk error functional we infer that

Evol[χu|χv](T ′) ≤ Evol[χu|χv](0) + C

ˆ T ′

0
Evol[χu|χv](t) dt

+ C

ˆ T ′

0

ˆ
Ω

|χv−χu||u−v| dx dt

for almost every T ′ ∈ [0, T ]. Adding (2.104) to the previous display, and making use of the
coercivity estimate (2.77) in combination with Korn’s inequality and an absorption argument
thus implies that for almost every T ′ ∈ [0, T ]

E[χu, u, V |χv, v](T ′) + Evol[χu|χv](T ′) + c

ˆ T ′

0

ˆ
Ω

|∇(u−v) + ∇(u−v)T|2 dx dt

≤ E[χu, u, V |χv, v](0) + Evol[χu|χv](0) (2.105)

+ C

ˆ T ′

0
E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt.

Step 3: (Conclusion) The stability estimates (2.11) and (2.12) are an immediate consequence
of the estimate (2.105) by an application of Gronwall’s lemma. In case of coinciding initial
conditions, it follows that Evol[χu|χv](t) = 0 for almost every t ∈ [0, T ]. This in turn
implies that χu(·, t) = χv(·, t) almost everywhere in Ω for almost every t ∈ [0, T ]. The
asserted representation of the varifold follows from the fact that E[χu, u, V |χv, v](t) = 0 for
almost every t ∈ [0, T ]. This concludes the proof of the conditional weak-strong uniqueness
principle.

2.3.4 Proof of Theorem 1
This is now an immediate consequence of Proposition 4 and the existence results of Proposition 7
and Lemma 8, respectively.

2.4 Bulk extension of the interface unit normal
The aim of this short section is the construction of an extension of the interface unit normal
in the vicinity of a space-time trajectory in Ω of a connected component of the interface Iv
corresponding to a strong solution in the sense of Definition 10 on a time interval [0, T ].
Mainly for reference purposes in later sections, it turns out to be beneficial to introduce
already at this stage some notation in relation to a decomposition of the interface Iv into its
topological features: the connected components of Iv ∩ Ω and the connected components
of Iv ∩ ∂Ω. Denoting by N ∈ N the total number of such topological features present
in the interface Iv we split {1, . . . , N} =: I ·∪ C by means of two disjoint subsets. In
particular, the subset I enumerates the space-time connected components of Iv ∩ Ω, i.e.,
time-evolving connected interfaces, whereas the subset C enumerates the space-time connected
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2. Stability of two-phase fluid flow with ninety degree contact angle

components of Iv ∩ ∂Ω, i.e., time-evolving contact points. If i ∈ I, we denote by Ti :=⋃︁
t∈[0,T ] Ti(t)×{t} ⊂ Iv ∩ (Ω×[0, T ]) the space-time trajectory of the corresponding connected

interfaces Ti(t) ⊂ Iv(t) ∩ Ω, t ∈ [0, T ].

For each i ∈ I, we want to define a vector field ξi subject to conditions as in Definition 2; at
least in a suitable neighborhood of Ti. We first formalize what we mean by the latter in form
of the following definition.

Definition 13. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable and smooth
boundary. Let (χv, v) be a strong solution to the incompressible Navier–Stokes equation for
two fluids in the sense of Definition 10 on a time interval [0, T ]. Fix a two-phase interface i ∈ I.
We call ri ∈ (0, 1] an admissible localization radius for the interface Ti ⊂ Iv ∩ (Ω×[0, T ]) if
the map

ΨTi
: Ti × (−2ri, 2ri) → R2 × [0, T ], (x, t, s) ↦→

(︂
x+ snIv(x, t), t

)︂
(2.106)

is bijective onto its image im(ΨTi
) := ΨTi

(︂
Ti×(−2ri, 2ri)

)︂
, and its inverse is a diffeomorphism

of class C0
t C

2
x(im(ΨTi

)) ∩ C1
t C

0
x(im(ΨTi

)).

In case such a scale ri ∈ (0, 1] exists, we may express the inverse by means of Ψ−1
Ti

=:
(PTi

, Id, sTi
) : im(ΨTi

) → Ti×(−2ri, 2ri). Hence, the map PTi
represents in each time slice the

nearest-point projection onto the interface Ti(t) ⊂ Iv(t) ∩ Ω, t ∈ [0, T ], whereas sTi
bears the

interpretation of a signed distance function with orientation fixed by ∇sTi
= nIv . In particular,

sTi
∈ C0

t C
3
x(im(ΨTi

)) ∩ C1
t C

1
x(im(ΨTi

)) as well as PTi
∈ C0

t C
2
x(im(ΨTi

)) ∩ C1
t C

0
x(im(ΨTi

)).

By a slight abuse of notation, we extend to im(ΨTi
) the definition of the normal vector field

resp. the scalar mean curvature of Ti by means of

nIv : im(ΨTi
) → S1, (x, t) ↦→ nIv(PTi

(x, t), t) = ∇sTi
(x, t), (2.107)

HIv : im(ΨTi
) → R, (x, t) ↦→ −(∆sTi

)(PTi
(x, t), t). (2.108)

Hence, we may register that nIv ∈ C0
t C

2
x(im(ΨTi

)) ∩ C1
t C

0
x(im(ΨTi

)) as well as HIv ∈
C0
t C

1
x(im(ΨTi

)).

It is clear from Definition 10 of a strong solution to the incompressible Navier–Stokes equation
for two fluids, in particular Definition 9 of smoothly evolving domains and interfaces, that all
interfaces admit an admissible localization radius in the sense of Definition 13 as a consequence
of the tubular neighborhood theorem.

Construction 14. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable and
smooth boundary. Let (χv, v) be a strong solution to the incompressible Navier–Stokes
equation for two fluids in the sense of Definition 10 on a time interval [0, T ]. Fix a two-phase
interface i ∈ I and let ri ∈ (0, 1] be an admissible localization radius for the interface Ti ⊂ Iv
in the sense of Definition 13. Then a bulk extension of the unit normal nIv along a smooth
interface Ti is the vector field ξi defined by

ξi(x, t) := nIv(x, t), (x, t) ∈ im(ΨTi
) ∩ (Ω×[0, T ]). (2.109)

We record the required properties of the vector field ξi.
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Proposition 15. Let the assumptions and notation of Construction 14 be in place. Then,
in terms of regularity it holds that ξi ∈ C0

t C
2
x ∩ C1

t C
0
x(im(ΨTi

) ∩ (Ω×[0, T ])). Moreover, we
have

∇ · ξi +HIv = O(dist(·, Ti)), (2.110)
∂tξ

i + (v · ∇)ξi + (Id −ξi ⊗ ξi)(∇v)Tξi = O(dist(·, Ti)), (2.111)
∂t|ξi|2 + (v · ∇)|ξi|2 = 0 (2.112)

throughout the space-time domain im(ΨTi
) ∩ (Ω×[0, T ]).

Proof. The asserted regularity of ξi is a direct consequence of its definition (2.109) and the
regularity of nIv from Definition 13. In view of the definitions (2.109), (2.107) and (2.108),
the estimate (2.110) is directly implied by a Lipschitz estimate based on the regularity of HIv

from Definition 13. The equation (2.112) is trivially fulfilled because ξi is a unit vector, cf.
the definition (2.109).

For a proof of (2.111), we first note that ∂tsTi
(x, t) = −

(︂
v(PTi

(x, t), t) · ∇
)︂
sTi

(x, t) for
all (x, t) ∈ im(ΨTi

)∩ (Ω×[0, T ]). Indeed, ∂tsTi
equals the normal speed (oriented with respect

to −nIv) of the nearest point on the connected interface Ti, which in turn by nIv = ∇sTi
is

precisely given by the asserted right hand side term. Differentiating the equation for the time
evolution of sTi

then yields (2.111) by means of ∇PTi
= Id − nIv ⊗ nIv − sTi

∇nIv , the chain
rule, and the regularity of v. Note carefully that this argument is actually valid regardless of
the assumption µ− = µ+ since (τIv · ∇)v does not jump across the interface Ti.

2.5 Extension of the interface unit normal at a 90◦

contact point
This section constitutes the core of the present work. We establish the existence of a boundary
adapted extension of the interface unit normal in the vicinity of a space-time trajectory of
a 90◦ contact point on the boundary ∂Ω.
The vector field from the previous section serves as the main building block for an extension
of nIv away from the domain boundary ∂Ω. However, it is immediately clear that the bulk
construction in general does not respect the necessary boundary condition n∂Ω · ξ = 0
along ∂Ω. (Even more drastically, on non-convex parts of ∂Ω the domain of definition for the
bulk construction from the previous section may not even include ∂Ω!) Hence, in the vicinity
of contact points a careful perturbation of the rather trivial construction from the previous
section is required to enforce the boundary condition. That this can indeed be achieved is
summarized in the following Proposition 16, representing the main result of this section.
For its formulation, it is convenient for the purposes of Section 2.6 to recall the notation in
relation to the decomposition of the interface Iv in terms of its topological features. More
precisely, denoting by N ∈ N the total number of such topological features present in the
interface Iv, we split {1, . . . , N} =: I ·∪ C, where I enumerates the time-evolving connected
interfaces of Iv ∩ Ω, whereas C enumerates the time-evolving contact points of Iv ∩ ∂Ω.
If i ∈ I, Ti := ⋃︁

t∈[0,T ] Ti(t)×{t} ⊂ Iv ∩ (Ω×[0, T ]) denotes the space-time trajectory of the
corresponding connected interface, whereas if c ∈ C, we denote by Tc := ⋃︁

t∈[0,T ] Tc(t)×{t} ⊂
Iv ∩ (∂Ω×[0, T ]) the space-time trajectory of the corresponding contact point. Finally, we
write i ∼ c for i ∈ I and c ∈ C if and only if Ti ends at Tc; otherwise i ̸∼ c.
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Proposition 16. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable and smooth
boundary ∂Ω. Let (χv, v) be a strong solution to the incompressible Navier–Stokes equation
for two fluids in the sense of Definition 10 on a time interval [0, T ]. Fix a contact point c ∈ C
and let i ∈ I be such that i ∼ c. Let rc ∈ (0, 1] be an associated admissible localization
radius in the sense of Definition 17 below.
There exists a potentially smaller radius ˆ︁rc ∈ (0, rc], and a vector field

ξc : Nˆ︁rc,c
(Ω) → S1

defined on the space-time domain Nˆ︁rc,c
(Ω) := ⋃︁

t∈[0,T ]

(︂
Bˆ︁rc

(Tc(t)) ∩ Ω
)︂
×{t}, such that the

following conditions are satisfied:

i) It holds ξc ∈
(︂
C0
t C

2
x ∩ C1

t C
0
x

)︂(︂
Nˆ︁rc,c

(Ω) \ Tc
)︂
.

ii) We have ξc(·, t) = nIv(·, t) and ∇ · ξc(·, t) = −HIv(·, t) along Ti(t) ∩ Bˆ︁rc
(Tc(t)) for all

t ∈ [0, T ].

iii) The required boundary condition is satisfied even away from the contact point, namely
ξc · n∂Ω = 0 along Nˆ︁rc,c

(Ω) ∩ (∂Ω×[0, T ]).

iv) The following estimates on the time evolution of ξchold true in Nˆ︁rc,c
(Ω)

∂tξ
c + (v · ∇)ξc + (Id −ξc ⊗ ξc)(∇v)Tξc = O

(︂
dist(·, Ti)

)︂
, (2.113)

∂t|ξc|2 + (v · ∇)|ξc|2 = 0. (2.114)

v) Let ri ∈ (0, 1] be an admissible localization radius for the interface Ti, and let ξi be the
bulk extension of the interface unit normal on scale ri as provided by Proposition 15. The
vector field ξc is a perturbation of the bulk extension ξi in the sense that the following
compatibility bounds hold true

|ξi(·, t) − ξc(·, t)| + |∇ · ξi(·, t) − ∇ · ξc(·, t)| ≤ C dist(·, Ti(t)), (2.115)
|ξi(·, t) · (ξi−ξc)(·, t)| ≤ C dist2(·, Ti(t)) (2.116)

within Bˆ︁rc∧ri
(Tc(t)) ∩

(︂
W c

Ti
(t) ∪W c

Ω±
v

(t)
)︂

for all t ∈ [0, T ], cf. Definition 17.

A vector field ξc subject to these requirements will be referred to as a contact point extension
of the interface unit normal on scale ˆ︁rc.
A proof of Proposition 16 is provided in Subsection 2.5.4. The preceding three subsections
collect all the ingredients required for the construction.

2.5.1 Description of the geometry close to a moving contact point,
choice of orthonormal frames, and a higher-order compatibility
condition

We provide a suitable decomposition for a space-time neighborhood of a moving contact
point Tc, c ∈ C. The main ingredient is given by the following notion of an admissible
localization radius. Though rather technical and lengthy in appearance, all requirements in
the definition are essentially a direct consequence of the regularity of a strong solution. The
main purpose of the notion of an admissible localization radius is to collect in a unified way
notation and properties which will be referred to numerous times in the sequel.
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2.5. Extension of the interface unit normal at a 90◦ contact point

Definition 17. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable and smooth
boundary ∂Ω. Let (χv, v) be a strong solution to the incompressible Navier–Stokes equation
for two fluids in the sense of Definition 10 on a time interval [0, T ]. Fix a contact point c ∈ C
and let i ∈ I be such that i ∼ c. Let ri ∈ (0, 1] be an admissible localization radius for
the connected interface Ti in the sense of Definition 13. We call rc ∈ (0, ri] an admissible
localization radius for the moving 90◦ contact point Tc if the following list of properties is
satisfied:

i) Let the map Ψ∂Ω : ∂Ω×(−2rc, 2rc) → R2 be given by (x, s) ↦→ x+sn∂Ω(x). We re-
quire Ψ∂Ω to be bijective onto its image im(Ψ∂Ω) := Ψ∂Ω

(︂
∂Ω×(−2rc, 2rc)

)︂
, and its

inverse Ψ−1
∂Ω is a diffeomorphism of class C2

x(im(Ψ∂Ω)). We may express the inverse by
means of Ψ−1

∂Ω =: (P∂Ω, s∂Ω) : im(Ψ∂Ω) → ∂Ω×(−2rc, 2rc). Hence, P∂Ω represents the
nearest-point projection onto ∂Ω, whereas s∂Ω is the signed distance function with orien-
tation fixed by ∇s∂Ω = n∂Ω. In particular, s∂Ω ∈ C3

x(im(Ψ∂Ω)) and P∂Ω ∈ C2
x(im(Ψ∂Ω)).

By a slight abuse of notation, we extend to im(Ψ∂Ω) the definition of the normal vector
field resp. the scalar mean curvature of ∂Ω by means of

n∂Ω : im(Ψ∂Ω) → S1, (x, t) ↦→ n∂Ω(P∂Ω(x)) = ∇s∂Ω(x), (2.117)
H∂Ω : im(Ψ∂Ω) → R, (x, t) ↦→ −(∆s∂Ω)(P∂Ω(x)). (2.118)

Hence, we note that n∂Ω ∈ C2
x(im(Ψ∂Ω)) and H∂Ω ∈ C1

x(im(Ψ∂Ω)).

ii) There exist sets W c
Ti

= ⋃︁
t∈[0,T ] W

c
Ti

(t)×{t}, W c
Ω±

v
= ⋃︁

t∈[0,T ] W
c
Ω±

v
(t)×{t} and W±,c

∂Ω =⋃︁
t∈[0,T ] W

±,c
∂Ω (t)×{t} with the following properties:

First, for every t ∈ [0, T ], the sets W c
Ti

(t), W c
Ω±

v
(t) and W±,c

∂Ω (t) are non-empty subsets
of Brc(Tc(t)) with pairwise disjoint interior. For all t ∈ [0, T ], each of these sets is
represented by a cone with apex at the contact point Tc(t) intersected with Brc(Tc(t)).
More precisely, there exist six time-dependent pairwise distinct unit-length vectors X±

Ti
,

XΩ±
v

and X±
∂Ω of class C1

t ([0, T ]) such that for all t ∈ [0, T ] it holds

W c
Ti

(t) =
(︂
Tc(t)+{αX+

Ti
(t) + βX−

Ti
(t) : α, β ∈ [0,∞)}

)︂
∩Brc(Tc(t)), (2.119)

W c
Ω±

v
(t) =

(︂
Tc(t)+{αXΩ±

v
(t) + βX±

Ti
(t) : α, β ∈ [0,∞)}

)︂
∩ Brc(Tc(t)), (2.120)

W±,c
∂Ω (t) =

(︂
Tc(t)+{αX±

∂Ω(t) + βXΩ±
v

(t) : α, β ∈ [0,∞)}
)︂

∩ Brc(Tc(t)). (2.121)

The opening angles of these cones are constant, and numerically fixed by

X±
∂Ω ·XΩ±

v
= X+

Ti
·X−

Ti
= cos(π/3), XΩ±

v
·X±

Ti
= cos(π/6). (2.122)

Second, for every t ∈ [0, T ], the sets W c
Ti

(t), W c
Ω±

v
(t) and W±,c

∂Ω (t) provide a decomposition
of Brc(Tc(t)) in form of

Brc(Tc(t)) ∩ Ω
=
(︂
W c

Ti
(t) ∪W c

Ω+
v
(t) ∪W c

Ω−
v

(t) ∪W+,c
∂Ω (t) ∪W−,c

∂Ω (t)
)︂

∩ Ω.
(2.123)

Third, for each t ∈ [0, T ], the following inclusions hold true (recall from Definition 13 the
notation for the diffeomorphism ΨTi

):

Brc(Tc(t)) ∩ Ti(t) ⊂
(︂
W c

Ti
(t) \ Tc(t)

)︂
⊂ {x ∈ Ω: (x, t) ∈ im(ΨTi

)}, (2.124)
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∂Ω

TiTc

(a) Interface wedge W c
Ti

.
∂Ω

TiTc

(b) Boundary wedges W ±
∂Ω.

∂Ω

TiTc

(c) Interpolation wedges W c
Ω±

v
.

Figure 2.1: Decomposition for a space-time neighborhood of Tc.

Brc(Tc(t)) ∩ ∂Ω ⊂ W+,c
∂Ω (t) ∪W−,c

∂Ω (t), (2.125)
W±,c
∂Ω (t) ⊂ {x ∈ R2 : x ∈ im(Ψ∂Ω)}, (2.126)

W c
Ω±

v
(t) \ Tc(t) ⊂ Ω±

v (t) ∩ {x ∈ Ω: (x, t) ∈ im(ΨTi
), x ∈ im(Ψ∂Ω)}. (2.127)

iii) Finally, there exists a constant C > 0 such that

dist(·, Tc) ∨ dist(·, ∂Ω) ≤ C dist(·, Ti) on W c
Ω±

v
∪W±,c

∂Ω , (2.128)

We refer from here onwards to W c
Ti

as the interface wedge, W±,c
∂Ω as boundary wedges, and

W c
Ω±

v
as interpolation wedges.

Figures 2.1–2.2 contain several illustrations of the previous definition. Before moving on, we
briefly discuss the existence of an admissible localization radius.

Lemma 18. Let the assumptions and notation of Definition 17 be in place. There exists a
constant C = C(∂Ω, χv, v, T ) ≥ 1 such that each rc ∈ (0, 1

C
] is an admissible localization

radius for the contact point Tc in the sense of Definition 17.
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∂Ω

TiTc

(a) Inclusion in the image of ΨTi .

∂Ω

TiTc

(b) Inclusion in the image of Ψ∂Ω.

Figure 2.2: Inclusion properties of diffeomorphisms.

Proof. The first item in the definition of an admissible localization radius is an immediate
consequence of the tubular neighborhood theorem, which in turn is facilitated by the regularity
of the domain boundary ∂Ω.
For a construction of the wedges, we only have to provide a definition for the vectors X±

Ti
, XΩ±

v

and X±
∂Ω A possible choice is the following. Fix t ∈ [0, T ] and let {c(t)} = Tc(t). The desired

unit vectors are obtained through rotation of the inward-pointing unit normal n∂Ω(c(t)). Note
that

(︂
n∂Ω(c(t)), nIv(c(t), t)

)︂
form an orthonormal basis of R2 thanks to the contact angle

condition (2.33). We then let X±
Ti

(t) be the unique unit vector with X±
Ti

(t) · n∂Ω(c(t)) =
√

3
2

as well as sign
(︂
X±

Ti
(t) ·nIv(c(t), t)

)︂
= ±1. Similarly, XΩ±

v
(t) represents the unique unit vector

with XΩ±
v
(t) · n∂Ω(c(t)) = 1

2 and sign
(︂
XΩ±

v
(t) · nIv(c(t), t)

)︂
= ±1. Finally, X±

∂Ω(t) denotes
the unique unit vector with X±

Ω (t) · n∂Ω(c(t)) = −1
2 and sign

(︂
X±

Ω (t) · nIv(c(t), t)
)︂

= ±1. For
an illustration, we refer again to Figure 2.1.
The wedges W c

Ti
(t), W c

Ω±
v
(t) and W±,c

∂Ω (t) may now be defined through the right hand
sides of (2.119), (2.120) and (2.121), respectively. The properties (2.123)–(2.128) are then
obviously valid for sufficiently small radii as a consequence of the regularity of the domain
boundary ∂Ω, the regularity of the interface Iv due to Definition 10 of a strong solution, as
well as the 90◦ contact angle condition (2.33).

A main step in the construction of a contact point extension of the interface unit normal
consists of perturbing the bulk construction of Section 2.4 by introducing suitable tangential
terms, cf. Subsection 2.5.2 below. (This in turn becomes necessary due to the boundary
constraint n∂Ω · ξc = 0 along ∂Ω.) To this end, the following constructions and formulas will
be of frequent use.

Lemma 19. Let the assumptions and notation of Definition 13 and Definition 17 be in place.
Let rc be an admissible localization radius of a contact point Tc and let i ∈ I such that i ∼ c.
Define Nrc,c(Ω) := ⋃︁

t∈[0,T ]

(︂
Brc(Tc(t)) ∩ Ω

)︂
×{t}. We fix unit-length tangential vector

fields ˜︁τIv resp. ˜︁τ∂Ω along Nrc,c(Ω) ∩ Ti resp. ∂Ω with orientation chosen such that ˜︁τIv = −n∂Ω
resp. ˜︁τ∂Ω = nIv hold true at the contact point Tc. We then define extensions

τIv : Nrc,c(Ω) ∩ im(ΨTi
) → S1, (x, t) ↦→ ˜︁τIv(PTi

(x, t), t),
τ∂Ω : im(Ψ∂Ω) → S1, x ↦→ ˜︁τ∂Ω(P∂Ω(x)),
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∂Ω

TiTc

τ∂Ω ≡ nIv

τIv n∂Ω

Figure 2.3: Orientation of normal and tangential vectors at Tc.

Then, it holds τIv ∈ C0
t C

2
x(Nrc,c(Ω) ∩ im(ΨTi

)) ∩ C1
t C

0
x(Nrc,c(Ω) ∩ im(ΨTi

)) as well as
τ∂Ω ∈ C2

x(im(Ψ∂Ω)). Moreover,

∇nIv = −HIvτIv ⊗ τIv +O(dist(·, Ti)) in Nrc,c(Ω) ∩ im(ΨTi
), (2.129)

∇τIv = HIvnIv ⊗ τIv +O(dist(·, Ti)) in Nrc,c(Ω) ∩ im(ΨTi
). (2.130)

Analogous formulas hold on im(Ψ∂Ω) for the orthonormal frame (n∂Ω, τ∂Ω).

Proof. By the choice of the orientations, there exists a constant matrix R representing rotation
by 90◦ so that nIv = RτIv and n∂Ω = Rτ∂Ω. The regularity of the tangential fields τIv and τ∂Ω
thus follows from Definition 13 and Definition 17, respectively. Moreover, the formula (2.130)
simply follows from (2.129) and the product rule. For a proof of (2.129), note first that
(nIv · ∇)nIv = ∇1

2 |nIv |2 = 0 and, as a consequence of ∇nIv = ∇2sTi
being symmetric, that

(∇nIv)TnIv = (nIv · ∇)nIv = 0. The only surviving component of ∇nIv is thus the one in
the direction of τIv ⊗ τIv , which on the interface in turn evaluates to −HIv , see (2.108). The
regularity of the map HIv from Definition 13 then entails (2.129). Of course, the exact same
argument works in terms of the orthonormal frame (n∂Ω, τ∂Ω).

The values of a contact point extension in the sense of Proposition 16 are highly constrained
along the domain boundary ∂Ω (i.e., n∂Ω · ξc = 0) or along the interface Ti (i.e., ξc = nIv),
respectively. This will be reflected in the construction by stitching together certain local
building blocks (i.e., ξc∂Ω and ξcTi

, see Subsection 2.5.2 below) which in turn take care of these
restrictions on an individual basis (i.e., n∂Ω · ξc∂Ω = 0 along ∂Ω, or ξcTi

= nIv along Ti, in the
vicinity of the contact point). These local building blocks will be unified into a single vector
field by interpolation (see Subsection 2.5.3 below). With this in mind, it is of no surprise that
compatibility conditions (including a higher-order one) at the contact point are needed to
implement this procedure. Indeed, recall from Proposition 16 that a contact point extension
requires a certain amount of regularity in combination with a control on its time evolution. We
therefore collect for reference purposes the necessary compatibility conditions in the following
result.

Lemma 20. Let the assumptions and notation of Definition 13, Definition 17 and Lemma 19
be in place. Then it holds

nIv(·, t) = τ∂Ω(·), τIv(·, t) = −n∂Ω(·) at Tc(t), t ∈ [0, T ], (2.131)(︂
τIv(·, t) · ∇

)︂
(nIv · v)(·, t) = H∂Ω(·)(nIv · v)(·, t) at Tc(t), t ∈ [0, T ]. (2.132)
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Proof. The relations (2.131) are immediate from the choices made in the statement of
Lemma 19. Let {c(t)} = Tc(t) for all t ∈ [0, T ]. The compatibility condition (2.132)
follows from differentiating in time the condition nIv(c(t), t) = τ∂Ω(c(t)). Indeed, one one
side we may compute by means of the chain rule, the analogue of (2.130) for τ∂Ω, (2.131),
and d

dtc(t) =
(︂
nIv(c(t), t) · v(c(t), t)

)︂
nIv(c(t), t) that

d
dtτ∂Ω(c(t)) = H∂Ω(c(t))

(︂
nIv(c(t), t) · v(c(t), t)

)︂
n∂Ω(c(t)).

On the other side, it follows from an application of the chain rule, the formula (2.129), the
previous expression of d

dtc(t), ∂tsTi
(·, t) = −nIv(·, t) · v(PTi

(·, t), t), as well as nIv = ∇sTi
that

d
dtnIv(c(t), t) = −

(︂
τIv(c(t), t) · ∇

)︂(︂
nIv · v

)︂
(c(t), t)τIv(c(t), t).

The second condition of (2.131) together with the previous two displays thus imply the
compatibility condition (2.132) as asserted.

2.5.2 Construction and properties of local building blocks
We have everything in place to proceed on with the first major step in the construction of
a contact point extension in the sense of Proposition 16. We define auxiliary extensions ξcTi

resp. ξc∂Ω of the unit normal vector field in the space-time domains Nrc,c(Ω) ∩ im(ΨTi
) resp.

Nrc,c(Ω) ∩ (im(Ψ∂Ω)×[0, T ]). In other words, we construct the extensions separately in the
regions close to the interface or close to the boundary (but always near to the contact point).

Definition and regularity properties of local building blocks for the extension of the
unit normal

A suitable ansatz for the two vector fields ξcTi
and ξc∂Ω may be provided as follows.

Construction 21. Let the assumptions and notation of Definition 13, Definition 17 and
Lemma 19 be in place. Expressing {c(t)} = Tc(t) for all t ∈ [0, T ], we define coefficients

αTi
: Nrc,c(Ω) ∩ im(ΨTi

) → R, (x, t) ↦→ −H∂Ω(c(t), t), (2.133)
α∂Ω : Nrc,c(Ω) ∩ (im(Ψ∂Ω)×[0, T ]) → R, (x, t) ↦→ −HIv(c(t), t). (2.134)

Based on these coefficient functions, we then define extensions

ξcTi
: Nrc,c(Ω) ∩ im(ΨTi

) → R2, ξc∂Ω : Nrc,c(Ω) ∩
(︂
im(Ψ∂Ω)×[0, T ]

)︂
→ R2

of the normal vector field nIv by means of an expansion ansatz

ξcTi
:= nIv + αTi

sTi
τIv − 1

2α
2
Ti
s2

Ti
nIv , (2.135)

ξc∂Ω := τ∂Ω + α∂Ωs∂Ωn∂Ω − 1
2α

2
∂Ωs

2
∂Ωτ∂Ω. (2.136)

Regularity properties of ξcTi
and ξc∂Ω, in particular compatibility up to first order at the contact

point, are the content of the following result.
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Lemma 22. Let the assumptions and notation of Construction 21 be in place. Then
the auxiliary vector fields satisfy ξcTi

∈ (C0
t C

2
x ∩ C1

t C
0
x)(Nrc,c(Ω) ∩ im(ΨTi

)) and ξc∂Ω ∈
(C0

t C
2
x ∩C1

t C
0
x)(Nrc,c(Ω) ∩ (im(Ψ∂Ω)×[0, T ])), with corresponding estimates for k ∈ {0, 1, 2}

|∇kξcTi
| + |∂tξcTi

| ≤ C, on Nrc,c(Ω) ∩ im(ΨTi
), (2.137)

|∇kξc∂Ω| + |∂tξc∂Ω| ≤ C, on Nrc,c(Ω) ∩ (im(Ψ∂Ω)×[0, T ]). (2.138)

Moreover, the constructions are compatible to first order at the contact point in the sense that

ξcTi
(·, t) = ξc∂Ω(·, t), ∇ξcTi

(·, t) = ∇ξc∂Ω(·, t) at Tc(t), t ∈ [0, T ]. (2.139)

Proof. Step 1 (Regularity estimates): Note first that αTi
, α∂Ω ∈ C1

t ([0, T ]) due to the
regularity of the maps HIv resp. H∂Ω from (2.108) resp. (2.118). The asserted bounds (2.137)
and (2.138) for the derivatives of the vector fields ξcTi

and ξc∂Ω can thus be inferred from the
definitions (2.135) and (2.136) in combination with the regularity of sTi

, nIv from Definition 13,
the regularity of s∂Ω, n∂Ω from Definition 17, as well as the regularity of τIv , τ∂Ω from Lemma 19.

Step 2 (First order compatibility at the contact point): The zeroth order condition of (2.139) is a
direct consequence of the definitions (2.135) and (2.136) in combination with the compatibility
condition (2.131). In order to prove the first order condition, it directly follows from (2.129)–
(2.130) and their analogues for the frame (n∂Ω, τ∂Ω), as well as the definitions (2.135)
and (2.136) that

∇ξcTi
= −HIvτIv ⊗ τIv + αTi

τIv ⊗ nIv +O(dist(·, Ti)), (2.140)
∇ξc∂Ω = H∂Ωn∂Ω ⊗ τ∂Ω + α∂Ωn∂Ω ⊗ n∂Ω +O(dist(·, ∂Ω)). (2.141)

Finally, since we have (2.131) due to the conventions adopted, using (2.133) and (2.134) we
can deduce the first order compatibility condition of (2.139).

Evolution equations for local building blocks

The following lemma provides the approximate evolution equations for our local constructions ξcTi

and ξc∂Ω, which will eventually lead us to (2.113)–(2.114).

Lemma 23. Let the assumptions and notation of Construction 21 be in place. Then it holds

∂tξ
c
Ti

+ (v · ∇)ξcTi
+ (Id −ξcTi

⊗ ξcTi
)(∇v)TξcTi

= O(dist(·, Ti)), (2.142)
∂t|ξcTi

|2 + (v · ∇)|ξcTi
|2 = O(dist3(·, Ti)), (2.143)

|1 − |ξcTi
|2| = O(dist4(·, Ti)) (2.144)

throughout the space-time domain Nrc,c(Ω) ∩ im(ΨTi
). Moreover, we have

∂tξ
c
∂Ω+(v · ∇)ξc∂Ω+(Id −ξc∂Ω ⊗ ξc∂Ω)(∇v)Tξc∂Ω = O(dist(·, ∂Ω) ∨ dist(·, Tc)), (2.145)

∂t|ξc∂Ω|2 + (v · ∇)|ξc∂Ω|2 = O(dist3(·, ∂Ω)), (2.146)
|1 − |ξc∂Ω|2| = O(dist4(·, ∂Ω)) (2.147)

throughout the space-time domain Nrc,c(Ω) ∩
(︂
im(Ψ∂Ω)×[0, T ]

)︂
.
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Proof. Step 1 (Proof of (2.142)): Note that because of the definitions (2.109) and (2.135),
it holds ξcTi

= ξi + αTi
sTi
τIv − 1

2α
2
Ti
s2

Ti
nIv . Since we already proved (2.111), we only need to

show that

αIv(∂tsTi
)τIv + αIv(v · ∇sTi

)τIv = O(dist(·, Ti)).

However, the above relation is an immediate consequence of the identity ∂tsTi
(x, t) =

−
(︂
v(PTi

(x, t), t) · ∇
)︂
sTi

(x, t) and the regularity of v, see Definition 10 of a strong solution,
through a Lipschitz estimate. This proves (2.142).

Step 2 (Proof of (2.145)): From the definition (2.136) and α∂Ω ∈ C1
t ([0, T ]) it directly follows

∂tξ
c
∂Ω = (∂tα∂Ω)s∂Ωn∂Ω = O(dist(·, ∂Ω)).

Having ξc∂Ω = τ∂Ω + α∂Ωs∂Ωn∂Ω − 1
2α

2
∂Ωs

2
∂Ωτ∂Ω, cf. the definition (2.136), it follows from

∇s∂Ω = n∂Ω, the analogues of (2.129)–(2.130) for the frame (n∂Ω, τ∂Ω), as well as the
boundary condition v · n∂Ω = 0 along ∂Ω that

(v · ∇)ξc∂Ω = (v · ∇)(τ∂Ω + α∂Ωs∂Ωn∂Ω) +O(dist(·, ∂Ω))
= (v · τ∂Ω)τ∂Ω · (H∂Ωτ∂Ω ⊗ n∂Ω + α∂Ωn∂Ω ⊗ n∂Ω) +O(dist(·, ∂Ω))
= (v · τ∂Ω)H∂Ωn∂Ω +O(dist(·, ∂Ω)).

Moreover, based on ξc∂Ω = τ∂Ω + O(dist(·, ∂Ω)) due to (2.136), v(c(t), t) =
(︂
v(c(t), t) ·

nIv(c(t), t)
)︂
nIv(c(t), t) along the moving contact point {c(t)} = Tc(t), the formula (2.129),

and the compatibility conditions (2.131)–(2.132) we infer that

(Id −ξc∂Ω ⊗ ξc∂Ω)(∇v)Tξc∂Ω

= (Id −τ∂Ω ⊗ τ∂Ω)(∇v)Tτ∂Ω +O(dist(·, ∂Ω))
= (τ∂Ω · (n∂Ω · ∇)v)n∂Ω +O(dist(·, ∂Ω))
= −

(︂
nIv(c(t), t) ·

(︂
τIv(c(t), t) · ∇

)︂
v(c(t), t)

)︂
n∂Ω +O(dist(·, ∂Ω) ∨ dist(·, Tc))

= −
(︂(︂
τIv(c(t), t) · ∇

)︂
(v · nIv)(c(t), t)

)︂
n∂Ω +O(dist(·, ∂Ω) ∨ dist(·, Tc))

= −(v · τ∂Ω)H∂Ωn∂Ω +O(dist(·, ∂Ω) ∨ dist(·, Tc)).

Hence, the estimate (2.145) follows as a consequence of the previous three displays.

Step 3 (Proof of (2.143)–(2.144) and (2.146)–(2.147)): Simply note that (2.143)–(2.144) as
well as (2.146)–(2.147) directly follow from the definitions (2.135) resp. (2.136) of the vector
field ξcTi

resp. the vector field ξc∂Ω in form of

|ξcTi
|2 =

(︃
1−1

2α
2
Ti
s2

Ti

)︃2
+ α2

Ti
s2

Ti
= 1 + 1

4α
4
Ti
s4

Ti
, (2.148)

|ξc∂Ω|2 =
(︃

1−1
2α

2
∂Ωs

2
∂Ω

)︃2
+ α2

∂Ωs
2
∂Ω = 1 + 1

4α
4
∂Ωs

4
∂Ω. (2.149)

This concludes the proof of Lemma 23.
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2. Stability of two-phase fluid flow with ninety degree contact angle

2.5.3 From building blocks to contact point extensions by
interpolation

As we discussed in the previous subsections, the auxiliary vector fields ξcTi
and ξc∂Ω provide main

building block for a contact point extension of the interface unit normal near the connected
interface Ti or near the domain boundary ∂Ω, respectively. More precisely, we will make use
of the auxiliary vector field ξcTi

on the wedges W c
Ti

∪W c
Ω+

v
∪W c

Ω−
v

, and of the auxiliary vector
field ξc∂Ω on the wedges W+,c

∂Ω ∪W−,c
∂Ω ∪W c

Ω+
v

∪W c
Ω−

v
. Note that this is indeed admissible thanks

to the inclusions (2.124), (2.126) and (2.127). As the domains of definition for the auxiliary
vector fields overlap, we adopt an interpolation procedure on the interpolation wedges W c

Ω±
v

.
To this end, we first define suitable interpolation functions.

Lemma 24. Let the assumptions and notation of Definition 17 be in place. Then there exists
a pair of interpolation functions

λ±
c :

⋃︂
t∈[0,T ]

(︂
W c

Ω±
v

(t) \ Tc(t)
)︂
×{t} → [0, 1]

which satisfies the following list of properties:

i) On the boundary of the interpolation wedges W c
Ω±

v
intersected with Brc(Tc), the values

of λ±
c and its derivatives up to second order are given by

λ±
c (·, t) = 0 on

(︂
∂W c

Ω±
v

(t) ∩ ∂W±,c
∂Ω (t)

)︂
\ Tc(t), (2.150)

λ±
c (·, t) = 1 on

(︂
∂W c

Ω±
v

(t) ∩ ∂W c
Ti

(t)
)︂

\ Tc(t), (2.151)

∇λ±
c (·, t) = 0, on

(︂
∂W c

Ω±
v

(t) ∩ Brc(Tc(t))
)︂

\ Tc(t), (2.152)

∇2λ±
c (·, t) = 0, ∂tλ±

c (·, t) = 0 on
(︂
∂W c

Ω±
v

(t) ∩ Brc(Tc(t))
)︂

\ Tc(t) (2.153)

for all t ∈ [0, T ].

ii) There exists a constant C such that the estimates

|∂tλ±
c (·, t)| + |∇λ±

c (·, t)| ≤ C| dist(·, Tc(t))|−1, (2.154)
|∇∂tλ±

c (·, t)| + |∇2λ±
c (·, t)| ≤ C| dist(·, Tc(t))|−2 (2.155)

hold true on W c
Ω±

v
(t) \ Tc(t) for all t ∈ [0, T ].

iii) We have an improved estimate on the advective derivative in form of⃓⃓⃓
∂tλ

±
c (·, t) +

(︂
v · ∇

)︂
λ±
c (·, t)

⃓⃓⃓
≤ C (2.156)

on W c
Ω±

v
(t) \ Tc(t) for all t ∈ [0, T ].

Proof. We fix a smooth function ˜︁λ : R → [0, 1] such that ˜︁λ ≡ 0 on [2
3 ,∞) and ˜︁λ ≡ 1 on

(−∞, 1
3 ]. Recall the representation (2.120) of the interpolation wedges WΩ±

v
, and that their

opening angle is determined via X±
Ti

·XΩ±
v

= cos(π/6) along Tc, see (2.122). We then define
a function λ : [−1, 1] → [0, 1] by λ(u) := ˜︁λ( 1−u

1− cos(π/6)), and set

λ±
c (x, t) := λ

(︄
X±

Ti
(t) · x−c(t)

|x−c(t)|

)︄
, t ∈ [0, T ], x ∈ WΩ±

v
(t) \ Tc(t).
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2.5. Extension of the interface unit normal at a 90◦ contact point

The assertions of the first two items of Lemma 24 are now immediate consequences of the
definitions due to d

dtX
±
Ti

∈ C0([0, T ]), cf. Definition 17.

It remains to prove the estimate (2.156) on the advective derivative. To this end, abbreviat-
ing u± := X±

Ti
(t) · x−c(t)

|x−c(t)| we compute

∂tλ
±
c (x, t) = λ′(u±)X±

Ti
(t) · ∂t

x−c(t)
|x−c(t)| + λ′(u±) x−c(t)

|x−c(t)| · d
dtX

±
Ti

(t)

= λ′(u±)X±
Ti

(t) · 1
|x−c(t)|

(︃
Id − x−c(t)

|x−c(t)| ⊗ x−c(t)
|x−c(t)|

)︃ d
dtc(t)

+ λ′(u±) x−c(t)
|x−c(t)| · d

dtX
±
Ti

(t)

= −
(︃ d

dtc(t) · ∇
)︃
λ±
c (x, t) + λ′(u±) x−c(t)

|x−c(t)| · d
dtX

±
Ti

(t).

This in turn yields the asserted estimate (2.156) due to d
dtX

±
Ti

∈ C0([0, T ]), cf. Definition 17,
d
dtc(t) = v(c(t), t), and a Lipschitz estimate based on the regularity of the fluid velocity v from
Definition 10 (which counteracts the blow-up (2.154) of ∇λ±

c ). This concludes the proof.

We have by now everything in place to state the definition of a vector field which in the end
will give rise to a contact point extension of the interface unit normal in the precise sense of
Proposition 16.

Construction 25. Let the assumptions and notation of Definition 17, Construction 21 and
Lemma 24 be in place. In particular, let rc ∈ (0, 1] be an admissible localization radius for the
contact point Tc. We define a vector field

ˆ︁ξc : Nrc,c(Ω) → R2

on the space-time domain Nrc,c(Ω) := ⋃︁
t∈[0,T ]

(︂
Brc(Tc(t)) ∩ Ω

)︂
×{t} as follows (recall the

decomposition (2.123) of the neighborhood Br(Tc(t)) ∩ Ω):

ˆ︁ξc(·, t) :=

⎧⎪⎪⎨⎪⎪⎩
ξcTi

(·, t) on W c
Ti

(t) ∩ Ω,
ξc∂Ω(·, t) on W±,c

∂Ω (t) ∩ Ω,
λ±
c (·, t)ξcTi

(·, t) +
(︂
1−λ±

c (·, t)
)︂
ξc∂Ω(·, t) on WΩ±

v
(t) \ Tc(t) ∩ Ω,

(2.157)

for all t ∈ [0, T ]. Note that the vector field ˆ︁ξc is not yet normalized to unit length, which is
the reason for denoting it by ˆ︁ξc instead of ξc. Observe also that (2.157) is well-defined in
view of the inclusions (2.124), (2.126) and (2.127).

2.5.4 Proof of Proposition 16
The proof proceeds in several steps. We first establish the required properties in terms of
the vector field ˆ︁ξc. The penultimate step is devoted to fixing ˆ︁rc ∈ (0, rc] such that

⃓⃓⃓ ˆ︁ξc ⃓⃓⃓ ≥ 1
2

on Nˆ︁rc,c
(Ω), so that one may define ξ :=

⃓⃓⃓ ˆ︁ξc ⃓⃓⃓−1 ˆ︁ξc ∈ S1 throughout Nˆ︁rc,c
(Ω) and transfer the

properties of ˆ︁ξc to ξc. Finally, in the last step we verify the asserted compatibility conditions
between a contact point extension and a bulk extension of the interface unit normal.
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2. Stability of two-phase fluid flow with ninety degree contact angle

Step 1: Regularity of ˆ︁ξc and properties i)–iii). Because of the inclusion (2.124) as well as
the definitions (2.135) and (2.157), it follows that ˆ︁ξc(·, t) = nIv(·, t) along Ti(t) ∩ Brc(Tc(t))
for all t ∈ [0, T ]. By the same reasons, relying also on ξcTi

= ξi + αTi
sTi
τIv − 1

2α
2
Ti
s2

Ti
nIv , cf.

the definitions (2.109) and (2.135), ∇sTi
= nIv and (2.110), we deduce that ∇ · ˆ︁ξc(·, t) =

−HIv(·, t) along Ti(t)∩Brc(Tc(t)) for all t ∈ [0, T ]. Moreover, in view of the inclusion (2.125)
as well as the definitions (2.136) and (2.157), we obtain ˜︁ξc(·, t) · n∂Ω = τ∂Ω · n∂Ω = 0 along
Brc(Tc(t)) ∩ ∂Ω. This yields the asserted properties i)–iii) of a contact point extension in
terms of ˆ︁ξc on scale rc.

The vector fields ˆ︁ξc, ∂t ˆ︁ξc, ∇ˆ︁ξc and ∇2 ˆ︁ξc exist in a pointwise sense and are continuous
throughout Nrc,c(Ω) \ Tc due to the definition (2.157) of ˆ︁ξc, the regularity of the local building
blocks ξcTi

and ξc∂Ω as provided by Lemma 22, as well as the regularity of the interpolation
parameter λ±

c from Lemma 24. Note in this context that no jumps occur across the boundaries
of the interpolation wedges as a consequence of the conditions (2.150)–(2.153). It remains to
prove the bounds

|∂t ˆ︁ξc(·, t)| + |∇k ˆ︁ξc(·, t)| ≤ C on
(︂
Brc(Tc(t)) \ Tc

)︂
∩ Ω (2.158)

for k ∈ {0, 1, 2}, for all t ∈ [0, T ] and some constant C > 0.

In the wedges W c
Ti

and W±,c
∂Ω containing the interface or the boundary of the domain, re-

spectively, the estimate follows directly from the estimates (2.137)–(2.138) and the defini-
tion (2.157). On interpolation wedges W c

Ω±
v

, we compute recalling (2.157)

∂t ˆ︁ξc = λ±
c ∂tξ

c
Ti

+ (1−λ±
c )∂tξc∂Ω + (ξcTi

−ξc∂Ω)∂tλ±
c

∇ˆ︁ξc = λ±
c ∇ξcTi

+ (1−λ±
c )∇ξc∂Ω + (ξcTi

−ξc∂Ω) ⊗ ∇λ±
c ,

∇2 ˆ︁ξc = λ±
c ∇2ξcTi

+ (1−λ±
c )∇2ξc∂Ω + (∇λ±

c ⊗ ∇sym)(ξcTi
−ξc∂Ω) + (ξcTi

−ξc∂Ω) ⊗ ∇2λ±
c .

Then we recall the bounds (2.154) and (2.155) for the derivatives of the interpolation functions,
the estimates (2.137) and (2.138) as well as the compatibility conditions (2.139) for the auxiliary
vector fields ξcTi

and ξc∂Ω. Feeding these into the previous display establishes (2.158) on the
interpolation wedges.

Step 2: Evolution equation in terms of ˆ︁ξc. We claim that

∂t ˆ︁ξc + (v · ∇)ˆ︁ξc + (∇v)T ˆ︁ξc = O(dist(·, Ti)) in Nrc,c(Ω). (2.159)

The validity of (2.159) on the wedges W c
Ti

and W±,c
∂Ω follows directly from the estimates (2.142)

resp. (2.145), the definition (2.157) and the bound (2.128). Hence, we only need to prove
the bound (2.159) on the interpolation wedges W c

Ω±
v

.

To this end, recall first that on the interpolation wedges W c
Ω±

v
the distance with respect to the

contact point Tc or the distance with respect to the domain boundary ∂Ω is dominated by
the distance to the connected interface Ti, see (2.128). Writing ˆ︁ξc = ξcTi

+ (1−λ±
c )(ξc∂Ω−ξcTi

),
and resp. ˆ︁ξc = ξc∂Ω + λ±

c (ξcIv
−ξc∂Ω), we then immediately see that

ˆ︁ξc ⊗ ˆ︁ξc = ξcTi
⊗ ξcTi

+O(dist2(·, Ti)), (2.160)ˆ︁ξc ⊗ ˆ︁ξc = ξc∂Ω ⊗ ξc∂Ω +O(dist2(·, Ti)), (2.161)
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2.5. Extension of the interface unit normal at a 90◦ contact point

due to compatibility (2.139) up to first order at the contact point Tc, and the regularity
estimates (2.137)–(2.138). Using the product rule and the definition (2.157) of ˆ︁ξc on W c

Ω±
v
,

we thus obtain

∂t ˆ︁ξc + (v · ∇)ˆ︁ξc + (Id −ˆ︁ξc ⊗ ˆ︁ξc)(∇v)T ˆ︁ξc
= λ±

c

(︂
∂t + (v · ∇) + (Id −ξcTi

⊗ ξcTi
)(∇v)T

)︂
ξcTi

(2.162)

+ (1 − λ±
c )
(︂
∂t + (v · ∇) + (Id −ξc∂Ω ⊗ ξc∂Ω)(∇v)T

)︂
ξc∂Ω

+ (∂tλ±
c + (v · ∇)λ±

c )(ξcTi
− ξc∂Ω) +O(dist2(·, Ti)).

Hence, we obtain (2.159) on interpolation wedges as a consequence of the estimates (2.142)
resp. (2.145), the bound (2.156) on the advective derivative of the interpolation parameter,
as well as the compatibility condition (2.139).

Step 3: We next claim that

∂t
⃓⃓⃓ ˆ︁ξc ⃓⃓⃓2 + (v · ∇)

⃓⃓⃓ ˆ︁ξc ⃓⃓⃓2 = O(dist(·, Ti)) in Nrc,c(Ω), (2.163)⃓⃓⃓⃓
∇|ˆ︁ξc ⃓⃓⃓2 ⃓⃓⃓⃓ = O(dist(·, Ti)) in Nrc,c(Ω). (2.164)

Outside of interpolation wedges, both claims are already established in view of the esti-
mates (2.143)–(2.144) resp. (2.146)–(2.147), the estimate (2.128) as well as the defini-
tion (2.157). Using the latter, we may compute on interpolation wedges W c

Ω±
v

|ˆ︁ξc|2 − 1 = λ± 2
c (|ξcTi

|2 − 1) + (1 − λ±
c )2(|ξc∂Ω|2 − 1) (2.165)

+ 2λ±
c (1 − λ±

c )(ξcTi
· ξc∂Ω − 1),

and thus(︂
∂t+(v · ∇)

)︂⃓⃓⃓ ˆ︁ξc ⃓⃓⃓2 =
(︂
∂t+(v · ∇)

)︂(︂
(λ±

c )2|ξcTi
|2+(1−λ±

c )2|ξc∂Ω|2 + 2λ±
c (1−λ±

c )
)︂

+ (ξcTi
· ξc∂Ω−1)

(︂
∂t+(v · ∇)

)︂(︂
2λ±

c (1−λ±
c )
)︂

(2.166)

+ 2λ±
c (1−λ±

c )
(︂
∂t+(v · ∇)

)︂
(ξcTi

· ξc∂Ω−1).

Because of (2.143)–(2.144) and (2.146)–(2.147), the first right hand side term of (2.166) is
of required order. For an estimate of the second and third right hand side term of (2.166),
observe that it suffices to prove ξcTi

· ξc∂Ω−1 = O(dist2(·, Ti)) on interpolation wedges as the
advective derivative of the interpolation parameter is bounded, see (2.156). However, it follows
immediately from the definitions (2.135) and (2.136), the formulas (2.140) and (2.141), as
well as the compatibility condition (2.139), that at the contact point Tc it holds ξcTi

· ξc∂Ω = 1,
(∇ξcTi

)Tξc∂Ω = 0 and (∇ξc∂Ω)TξcTi
= 0. Hence, ξcTi

· ξc∂Ω−1 = O(dist2(·, Ti)) is a consequence
of a Lipschitz estimate making use of the estimates (2.137)–(2.138) and the bound (2.128).

In summary, the above arguments upgrade (2.166) to (2.163), and analogous considerations
based on (2.165) also entail (2.164) on interpolation wedges.

Step 4: Choice of ˆ︁rc and definition of the normalized vector field ξc. By the definition (2.157)
of the vector field ˆ︁ξc we have |ˆ︁ξc(·, t)| = 1 on Brc(Tc(t)) ∩ (∂Ω ∪ Ti(t)) for all t ∈ [0, T ]. Due
to its Lipschitz continuity, see Step 1 of the proof, we may choose a radius ˆ︁rc ≤ rc such
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2. Stability of two-phase fluid flow with ninety degree contact angle

that |ˆ︁ξc| ≥ 1
2 holds true in the space-time domain Nˆ︁rc,c

(Ω). We then define ξc :=
⃓⃓⃓ ˆ︁ξc ⃓⃓⃓−1 ˆ︁ξc ∈ S1

throughout Nˆ︁rc,c
(Ω), so that it remains to argue that the properties of ˆ︁ξc are inherited by ξc.

Since ξc(·, t) = ˆ︁ξc(·, t) on Brc(Tc(t))∩(∂Ω∪Ti(t)) for all t ∈ [0, T ], it immediately follows that
ξc(·, t) = nIv(·, t) along Ti(t) ∩Bˆ︁rc

(Tc(t)) as well as ξc(·, t) ·n∂Ω(·) = 0 along ∂Ω ∩Bˆ︁rc
(Tc(t))

for all t ∈ [0, T ]. Moreover, ∇ · ξc = |ˆ︁ξc|−1∇ · ˆ︁ξc − (ˆ︁ξc·∇)|ˆ︁ξc|2

2|ˆ︁ξc|3
so that ∇ · ξc = −HIv(·, t) holds

true on Ti(t) ∩Bˆ︁rc
(Tc(t)) for all t ∈ [0, T ] because of (2.164), the validity of this equation in

terms of ˆ︁ξc, and the fact that |ˆ︁ξc(·, t)| = 1 on Ti(t) ∩Bˆ︁rc
(Tc(t)) for all t ∈ [0, T ]. In summary,

properties ii)–iii) are satisfied.

The required regularity is obtained by the choice of the radius ˆ︁rc, the definition ξc :=
⃓⃓⃓ ˆ︁ξc ⃓⃓⃓−1 ˆ︁ξc,

and the fact that the vector field ˆ︁ξc already satisfies it as argued in Step 1 of this proof.
Since ξc ∈ S1 throughout Nˆ︁rc,c

(Ω), (2.114) holds true for trivial reasons. For a proof of (2.113),
one may argue as follows. Recalling that |ˆ︁ξc| ≥ 1

2 holds true in Nˆ︁rc,c
(Ω), adding zero and

using the product rule yields

∂tξ
c + (v · ∇)ξc + (Id −ξc ⊗ ξc)(∇v)Tξc

= ∂tξ
c + (v · ∇)ξc + (Id −ˆ︁ξc ⊗ ˆ︁ξc)(∇v)Tξc − (1 − |ˆ︁ξc|2)(ξc ⊗ ξc)(∇v)Tξc

= 1
|ˆ︁ξc|

(︂
∂t ˆ︁ξc + (v · ∇)ˆ︁ξc + (Id −ˆ︁ξc ⊗ ˆ︁ξc)(∇v)T ˆ︁ξc)︂−

ˆ︁ξc
2|ˆ︁ξc|3 (∂t|ˆ︁ξc|2 + (v · ∇)|ˆ︁ξc|2)

− (1 − |ˆ︁ξc|2)(ξc ⊗ ξc)(∇v)Tξc

throughout Nˆ︁rc,c
(Ω). Observe that the first right hand side term is estimated by (2.159), the

second by (2.163), and the third by a Lipschitz estimate based on the fact |ˆ︁ξc(·, t)| = 1 along
Ti(t) ∩ Bˆ︁rc

(Tc(t)) for all t ∈ [0, T ]. Hence, (2.113) holds true.
Step 5: Contact point extensions as perturbations of bulk extensions. As a preparation for the
proof of the compatability estimates, we claim that

|ξc−ˆ︁ξ c| ≤ C dist2(·, Ti). (2.167)

Note that because of the definition (2.157), the compatibility conditions (2.139) at the contact
point, the regularity estimates (2.137)–(2.138) for the local building blocks, the controlled
blow-up (2.154), the coercivity estimate (2.144), and the estimate (2.128), it holds

∇ 1
|ˆ︁ξ c| = −(ˆ︁ξ c · ∇)ˆ︁ξ c

|ˆ︁ξ c|3 = −
(ξcTi

· ∇)ˆ︁ξ c
|ˆ︁ξ c|3 +O(dist(·, Ti))

= −
(ξcTi

· ∇)ξ cTi

|ˆ︁ξ c|3 +O(dist(·, Ti)) = O(dist(·, Ti)).

Hence, the asserted estimate (2.167) follows from ξc−ˆ︁ξ c = (|ˆ︁ξ c|−1−1)ˆ︁ξ c, the fact that
ξc(·, t) = ˆ︁ξ c(·, t) ≡ nIv(·, t) along the local interface patch Ti(t) ∩Bˆ︁r c(Tc(t)) for all t ∈ [0, T ],
and the previous display.
We exploit (2.167) as follows. Within the interface wedge W c

Ti
, it now follows from the

definitions (2.109), (2.135) and (2.157) that

ξc − ξi = ξcTi
− ξi +O(dist2(·, Ti)) = αTi

sTi
τIv − 1

2α
2
Ti
s2

Ti
nIv +O(dist2(·, Ti)).
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Within interpolation wedges, we have the same representation thanks to the first-order
compatibility (2.139) in form of

ξc − ξi = ˆ︁ξc − ξi +O(dist2(·, Ti))
= (ξcTi

− ξi) + (1−λ±
c )(ξc∂Ω − ξcTi

) +O(dist2(·, Ti))

= αTi
sTi
τIv − 1

2α
2
Ti
s2

Ti
nIv +O(dist2(·, Ti)).

In particular, the compatibility bounds (2.115) and (2.116) are satisfied within interface and
interpolation wedges, respectively.

2.6 Existence of boundary adapted extensions of the
unit normal

2.6.1 From local to global extensions
The idea for proving Proposition 7 consists of stitching together the local extensions from
the previous two sections by means of a suitable partition of unity on the interface Iv. For a
construction of the latter, recall first the decomposition of the interface Iv into its topological
features, namely, the connected components of Iv ∩ Ω and the connected components of
Iv ∩ ∂Ω. Denoting by N ∈ N the total number of such topological features present in the
interface Iv we split {1, . . . , N} =: I ·∪ C by means of two disjoint subsets. Here, the subset
I enumerates the space-time connected components of Iv ∩ Ω (being time-evolving connected
interfaces), whereas the subset C enumerates the space-time connected components of Iv∩∂Ω
(being time-evolving contact points). If i ∈ I, we let Ti ⊂ Iv denote the space-time trajectory
in Ω of the corresponding connected interface. Furthermore, for every c ∈ C we write Tc
representing the space-time trajectory in ∂Ω of the corresponding contact point. Finally, let
us write i ∼ c for i ∈ I and c ∈ C if and only if Ti ends at Tc; otherwise i ̸∼ c.

Lemma 26 (Construction of a partition of unity). Let d = 2, and let Ω ⊂ R2 be a
bounded domain with orientable and smooth boundary. Let (χv, v) be a strong solution to
the incompressible Navier–Stokes equation for two fluids in the sense of Definition 10 on a
time interval [0, T ]. For each i ∈ I let ri be the localization radius of Definition 13, and for
each c ∈ C denote by ˆ︁rc the localization radius of Proposition 16. There then exists a family
(η1, . . . , ηN) of cutoff functions

ηn : R2 × [0, T ] → [0, 1], n ∈ {1, . . . , N},

with the regularity ηn ∈ (C0
t C

2
x ∩ C1

t C
0
x)
(︃
R2×[0, T ] \

⋃︂
c∈C

Tc
)︃
, (2.168)

and a localization radius ˆ︁r ∈ (0,mini∈I ri ∧ minc∈C ˆ︁rc), which together are subject to the
following list of conditions:

• The family (η1, . . . , ηN) is a partition of unity along the interface Iv. Defining a bulk
cutoff by means of ηbulk := 1 −∑︁N

n=1 ηn, it holds ηbulk ∈ [0, 1]. On top we have coercivity
estimates in form of

1
C

(dist2(·, Iv) ∧ 1) ≤ ηbulk ≤ C(dist2(·, Iv) ∧ 1) in R2 × [0, T ], (2.169)

|∇ηbulk| ≤ C(dist(·, Iv) ∧ 1) in R2 × [0, T ], (2.170)
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2. Stability of two-phase fluid flow with ninety degree contact angle

• For all two-phase interfaces i ∈ I it holds

supp ηi(·, t) ⊂ ΨTi
(Ti(t)×{t}×[−ˆ︁r, ˆ︁r]) for all t ∈ [0, T ], (2.171)

with ΨTi
denoting the change of variables from Definition 13. For contact points c ∈ C, it

is required that

supp ηc(·, t) ⊂ Bˆ︁r(︂Tc(t))︂ for all t ∈ [0, T ]. (2.172)

• For all distinct two-phase interfaces i, i′ ∈ I it holds

supp ηi(·, t) ∩ supp ηi′(·, t) = ∅ for all t ∈ [0, T ]. (2.173)

The same is required for all distinct contact points c, c′ ∈ I

supp ηc(·, t) ∩ supp ηc′(·, t) = ∅ for all t ∈ [0, T ]. (2.174)

• Let a two-phase interface i ∈ I and a contact point c ∈ C be fixed. Then supp ηi ∩
supp ηc ̸= ∅ if and only if i ∼ c, and in that case it holds

supp ηi(·, t) ∩ supp ηc(·, t) ⊂ Bˆ︁r(Tc(t)) ∩
(︂
W c

Ti
(t) ∪W c

Ω±
v

(t)
)︂

(2.175)

for all t ∈ [0, T ], with the wedges W c
Ti

and W c
Ω±

v
introduced in Definition 17.

Proof. The proof proceeds in several steps.
Step 1: (Definition of auxiliary cutoff functions) Fix a smooth cutoff function θ : R → [0, 1]
with the properties that θ(r) = 1 for |r| ≤ 1

2 and θ(r) = 0 for |r| ≥ 1. Define

ζ(r) := (1 − r2)θ(r2), r ∈ R. (2.176)

Based on this quadratic profile, we may introduce two classes of cutoff functions associated to
the two different natures of topological features present in the interface Iv. To this end, letˆ︁r ∈ (0,mini∈I ri ∧ minc∈C ˆ︁rc). Moreover, let δ ∈ (0, 1] be a constant. Both constants ˆ︁r and
δ will be determined in the course of the proof.
For two-phase interfaces Ti ⊂ Iv, i ∈ I, we may then define

ζi(x, t) := ζ
(︃sdist(x, Ti(t))

δˆ︁r
)︃
, (x, t) ∈ im(ΨTi

) := ΨTi

(︂
Ti×(−2ri, 2ri)

)︂
(2.177)

where the change of variables ΨTi
and the associated signed distance sdist(·, Ti) are from

Definition 13 of the admissible localization radius ri. Furthermore, for contact points Tc,
c ∈ C, we define

ζc(x, t) := ζ
(︃dist(x, Tc(t))

δˆ︁r
)︃
, (x, t) ∈ R2 × [0, T ]. (2.178)

Step 2: (Choice of the constant ˆ︁r ∈ (0,mini∈I ri ∧ minc∈C ˆ︁rc)) It is a consequence of the
uniform regularity of the interface Iv in space-time that one may choose ˆ︁r ∈ (0,mini∈I ri ∧
minc∈C ˆ︁rc) small enough such that the following localization properties hold true

ΨTi
(Ti(t)×{t}×[−ˆ︁r, ˆ︁r]) ∩ ΨTi′ (Ti′(t)×{t}×[−ˆ︁r, ˆ︁r]) = ∅ ∀i′ ∈ I, i′ ̸= i, (2.179)
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ΨTi
(Ti(t)×{t}×[−ˆ︁r, ˆ︁r]) ∩ Bˆ︁r(Tc(t)) ̸= ∅ ⇔ ∃c ∈ C : i ∼ c, (2.180)

Bˆ︁r(Tc(t)) ∩ Bˆ︁r(Tc′(t)) = ∅ ∀c, c′ ∈ C, c′ ̸= c. (2.181)

for all t ∈ [0, T ] and all i ∈ I.
Step 3: (Construction of the partition of unity, part I) We start with the construction of the
cutoffs ηi for two-phase interfaces i ∈ I. Away from contact points, we set

ηi(x, t) := ζi(x, t), (x, t) ∈ im(ΨTi
) \

⋃︂
c∈C

⋃︂
t′∈[0,T ]

Bˆ︁r(︂Tc(t′))︂×{t′}, (2.182)

which is well-defined due to the choice of ˆ︁r.
Assume now there exists c ∈ C such that i ∼ c. Recall from Definition 17 of the admissible
localization radius rc that for all t ∈ [0, T ] we decomposed Ω ∩Brc(Tc(t)) by means of five
pairwise disjoint open wedges W±,c

∂Ω (t),W c
Ti

(t),W c
Ω±

v
(t) ⊂ R2. In the wedge W c

Ti
containing

the two-phase interface Ti ⊂ Iv, we define

ηi(x, t) := (1 − ζc(x, t))ζi(x, t), (x, t) ∈
⋃︂

t′∈[0,T ]

(︂
Bˆ︁r(︂Tc(t′))︂ ∩W c

Ti
(t′)

)︂
×{t′}. (2.183)

This is indeed well-defined by the choice of ˆ︁r and having

Brc(Tc(t)) ∩W c
Ti

(t) ⊂ ΨTi
(Ti(t)×{t}×(−2rc, 2rc))

for all t ∈ [0, T ]; the latter in turn being a consequence of Definition 17 of the admissible
localization radius rc.
Within the ball Bˆ︁r(Tc(t)), we aim to restrict the support of ηi(·, t) to the region Bˆ︁r(Tc(t)) ∩(︂
W c

Ti
(t) ∪W c

Ω±
v

(t)
)︂

for all t ∈ [0, T ]. This will be done by means of the interpolation functions
λ±
c of Lemma 24. Recall in this context the convention that λ±

c (·, t) was set equal to one on(︂
∂W c

Ω±
v

(t) ∩ ∂W c
Ti

(t)
)︂

\ Tc(t) and set equal to zero on
(︂
∂W c

Ω±
v

(t) ∩ ∂W±,c
∂Ω (t)

)︂
\ Tc(t) for all

t ∈ [0, T ]. In particular, we may define in the interpolation wedges W c
Ω±

v

ηi(x, t) := λ±
c (x, t)(1 − ζc(x, t))ζi(x, t), (2.184)

(x, t) ∈
⋃︂

t′∈[0,T ]

(︂
Bˆ︁r(︂Tc(t′))︂ ∩W c

Ω±
v

(t)
)︂
×{t′}.

Again, this is well-defined because of the choice of ˆ︁r and the fact that

Brc(Tc(t)) ∩W c
Ω±

v
(t) ⊂ ΨTi(t)(Ti(t)×{t}×(−2rc, 2rc))

for all t ∈ [0, T ] due to Definition 17 of the admissible localization radius rc.
Outside of the space-time domains appearing in the definitions (2.182)–(2.184), we simply set
ηi equal to zero.
In view of the definitions (2.176)–(2.178) and the definitions (2.182)–(2.184), it now suffices
to choose δ ∈ (0, 1] sufficiently small such that (2.171) holds true, and in case there exists
c ∈ C such that i ∼ c one may on top achieve

supp ηi(·, t) ∩ Bˆ︁r(Tc(t)) ⊂ Bˆ︁r(Tc(t)) ∩
(︂
W c

Ti
(t) ∪W c

Ω±
v

(t)
)︂

(2.185)

for all t ∈ [0, T ]. Moreover, in light of (2.171) and (2.179) we also obtain (2.173).
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2. Stability of two-phase fluid flow with ninety degree contact angle

Step 4: (Construction of the partition of unity, part II) We proceed with the construction
of the cutoffs ηc for contact points c ∈ C. To this end, let i ∈ I be the unique two-phase
interface such that i ∼ c. In the wedge W c

Ti
containing the two-phase interface Ti ⊂ Iv we set

ηc(x, t) := ζc(x, t)ζi(x, t), (x, t) ∈
⋃︂

t′∈[0,T ]

(︂
Bˆ︁r(︂Tc(t′))︂ ∩W c

Ti
(t′)

)︂
×{t′}, (2.186)

which is well-defined based on the same reason as for (2.183).
Moreover, in the interpolation wedges W c

Ω±
v

we define

ηc(x, t) := λ±
c (x, t)ζc(x, t)ζi(x, t) + (1 − λ±

c (x, t))ζc(x, t), (2.187)
(x, t) ∈

⋃︂
t′∈[0,T ]

(︂
Bˆ︁r(︂Tc(t′))︂ ∩W c

Ω±
v

(t)
)︂
×{t′}.

By the same argument as for (2.184), this is again well-defined.
Outside of the space-time domains appearing in the previous two definitions we simply set
ηc := ζc. In particular, we register for reference purposes that

ηc(x, t) := ζc(x, t), (x, t) ∈
⋃︂

t′∈[0,T ]

(︂
Br̂

(︂
Tc(t′)

)︂
\
(︂
W c

Ti
(t′) ∪W c

Ω±
v

(t)
)︂)︂

×{t′}. (2.188)

It now immediately follows from the definition (2.178) that (2.172) is satisfied. In particular,
for pairs i ∈ I and c ∈ C such that i ∼ c, supp ηi ∩ supp ηc ̸= ∅ and we obtain (2.175) as an
update of (2.185). Moreover, by (2.172) and (2.181) we deduce the validity of (2.174). In
the case of pairs i ∈ I and c ∈ C with i ̸∼ c, due to (2.180), (2.171) and (2.172), we can
conclude that supp ηi ∩ supp ηc = ∅.
Step 5: (Partition of unity property along the interface) Fix t ∈ [0, T ], and consider first the
case of x ∈ Iv(t) \ ⋃︁c∈C Bˆ︁r(Tc(t)). The combination of the support properties (2.171) and
(2.172) with the localization property (2.179) implies there exists a unique two-phase interface
i∗ = i∗(x) ∈ I such that ∑︁N

n=1 ηn(x, t) = ηi∗(x, t). Hence, we may deduce from (2.182) that∑︁N
n=1 ηn(x, t) = 1 for all t ∈ [0, T ] and all x ∈ Iv(t) \ ⋃︁c∈C Bˆ︁r(Tc(t)).

Fix a contact point c ∈ C and a point x ∈ Iv(t)∩Bˆ︁r(Tc(t)). Let i ∈ I be the unique two-phase
interface such that i ∼ c. By the support properties (2.171) and (2.172) in combination with
the localization properties (2.179)–(2.181) it follows that ∑︁N

n=1 ηn(x, t) = ηc(x, t) + ηi(x, t).
In particular ∑︁N

n=1 ηn(x, t) = 1 due to the definitions (2.183) and (2.186). The two discussed
cases thus imply that

N∑︂
n=1

ηn(x, t) = 1, (x, t) ∈
⋃︂

t′∈[0,T ]
Iv(t′) × {t′}. (2.189)

Step 6: (Regularity) Outside of interpolation wedges, the required regularity is an immediate
consequence of the uniform regularity of the interface Iv and the definitions (2.182), (2.183),
(2.186) and (2.187).
In interpolation wedges, one has to argue based on the definitions (2.184) and (2.187). In
terms of regularity, the critical cases originating from an application of the product rule consist
of those when derivatives hit the interpolation parameter. However, the by (2.154)–(2.155)
controlled blow-up of the derivatives of the interpolation parameter is always counteracted
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by the presence of the term 1 − ζc (cf. (2.184) and (2.187)) which is of second order in
the distance to the contact point due to (2.176) and (2.178). In other words, the required
regularity also holds true within interpolation wedges.
The two considered cases taken together entail the asserted regularity.
Step 7: (Estimate for the bulk cutoff) In the course of establishing the desired coercivity
estimates (2.169) and (2.170), we also convince ourselves of the fact that

ηbulk = 1 −
N∑︂
n=1

ηn ∈ [0, 1] (2.190)

throughout R2 × [0, T ]. By the support properties (2.171) and (2.172), in both cases it suffices
to argue for points contained in ΨTi

(︂
Ti(t)×{t}×[−ˆ︁r, ˆ︁r])︂ \ ⋃︁c∈C Bˆ︁r(︂Tc(t))︂ or Bˆ︁r(Tc(t)) for

all i ∈ I, all c ∈ C and all t ∈ [0, T ].
We start with the latter and fix i ∈ I as well as t ∈ [0, T ]. Due to the localization
property (2.179) and subsequently plugging in (2.182), we get

ηbulk(·, t) = 1−ηi(·, t) = 1−ζi(·, t) in ΨTi

(︂
Ti(t)×{t}×[−ˆ︁r, ˆ︁r])︂ \

⋃︂
c∈C

Bˆ︁r(︂Tc(t))︂. (2.191)

The validity of (2.169), (2.170) and (2.190) in ΨTi

(︂
Ti(t)×{t}×[−ˆ︁r, ˆ︁r])︂\⋃︁c∈C Bˆ︁r(︂Tc(t))︂ thus

follows immediately from definition (2.177).
Fix c ∈ C, and let i ∈ I be the unique two-phase interface with i ∼ c. Due to (2.171), (2.172)
as well as (2.179)–(2.181) we have

ηbulk(·, t) = 1 − ηc(·, t) − ηi(·, t) in Bˆ︁r(︂Tc(t))︂ ∩
(︂
W c

Ti
(t) ∪W c

Ω±
v

(t)
)︂
. (2.192)

Plugging in (2.183) and (2.186) or (2.184) and (2.187), respectively, yields

ηbulk(·, t) = 1 − ζi(·, t) in Bˆ︁r(︂Tc(t))︂ ∩W c
Ti

(t), (2.193)

as well as

ηbulk(·, t) = λ±
c (·, t)(1−ζi(·, t)) + (1−λ±

c (·, t))(1−ζc(·, t)) in Bˆ︁r(︂Tc(t))︂ ∩W c
Ω±

v
(t).
(2.194)

Hence, we can infer by means of (2.177) and (2.178) that (2.169), (2.170) and (2.190) hold
true in the domain Bˆ︁r(︂Tc(t))︂ ∩

(︂
W c

Ti
(t) ∪W c

Ω±
v

(t)
)︂
. Finally, we have

ηbulk(·, t) = 1 − ηc(·, t) = 1 − ζc(·, t) in Bˆ︁r(︂Tc(t))︂ \
(︂
W c

Ti
(t) ∪W c

Ω±
v

(t)
)︂

(2.195)

as a consequence of (2.171), (2.172), (2.179)–(2.181) and (2.188). The previous display in
turn implies (2.169), (2.170) and (2.190) in Bˆ︁r(︂Tc(t))︂\

(︂
W c

Ti
(t)∪W c

Ω±
v

(t)
)︂

because of (2.178).
This eventually concludes the proof of Lemma 26.

Construction 27 (From local to global extensions). Let d = 2, and let Ω ⊂ R2 be a
bounded domain with orientable and smooth boundary. Let (χv, v) be a strong solution to
the incompressible Navier–Stokes equation for two fluids in the sense of Definition 10 on a
time interval [0, T ]. Let (η1, . . . , ηN ) be a partition of unity along the interface Iv as given by
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the proof of Lemma 26. For each two-phase interface i ∈ I denote by ξi the bulk extension
of Proposition 15, and for each contact point c ∈ C let ξc be the contact point extension of
Proposition 16.
We then define a vector field ξ : Ω × [0, T ] → R2 with regularity

ξ ∈
(︂
C0
t C

2
x ∩ C1

t C
0
x

)︂(︂
Ω×[0, T ] \ (Iv ∩ (∂Ω×[0, T ]))

)︂
(2.196)

by means of the formula

ξ :=
N∑︂
n=1

ηnξ
n. (2.197)

Before we proceed on with a proof of Proposition 7, we first deduce that the bulk cutoff ηbulk
of Lemma 26 is transported by the fluid velocity v up to an admissible error in the distance to
the interface of the strong solution.

Lemma 28 (Transport equation for bulk cutoff). Let d = 2, and let Ω ⊂ R2 be a bounded
domain with orientable and smooth boundary. Let (χv, v) be a strong solution to the
incompressible Navier–Stokes equation for two fluids in the sense of Definition 10 on a time
interval [0, T ]. Let (η1, . . . , ηN) be a partition of unity along the interface Iv as given by the
proof of Lemma 26.
The bulk cutoff ηbulk = 1 − ∑︁N

n=1 ηn is then transported by the fluid velocity v to second
order in form of

|∂tηbulk + (v · ∇)ηbulk| ≤ C(1 ∧ dist2(·, Iv)) in Ω × [0, T ]. (2.198)

Proof. Let ˆ︁r ∈ (0, 1
2 ] be the localization radius of Lemma 26. In view of the regularity

estimate (2.168) and the fact that

Ω \
(︄ ⋃︂
c∈C

Bˆ︁r(Tc(t)) ∪
⋃︂
i∈I

im(ΨTi
)
)︄

⊂ Ω ∩
{︂
x ∈ R2 : dist(x, Iv(t)) > ˆ︁r}︂

for all t ∈ [0, T ], it suffices to establish (2.198) within Ω ∩ ΨTi

(︂
Ti(t)×{t}×[−ˆ︁r, ˆ︁r])︂ \⋃︁

c∈C Bˆ︁r(︂Tc(t))︂ or Ω ∩ Bˆ︁r(Tc(t)) for all i ∈ I, all c ∈ C and all t ∈ [0, T ].

Step 1: (Estimate near the interface but away from contact points) Fix a two-phase interface
i ∈ I. As a consequence of the two identities in (2.191), we may compute

∂tηbulk + (v · ∇)ηbulk = −
(︂
∂tζi + (v · ∇)ζi

)︂
+ ηbulk(v · ∇)ζi (2.199)

in Ω ∩ ΨTi

(︂
Ti(t)×{t}×[−ˆ︁r, ˆ︁r])︂ \ ⋃︁c∈C Bˆ︁r(︂Tc(t))︂ for all t ∈ [0, T ]. Recall that the signed

distance to the two-phase interface Ti ⊂ Iv is transported to first order by the fluid velocity v,
and that the profile ζ from (2.176) is quadratic around the origin. Hence, by the chain rule
and the definition (2.177) we obtain⃓⃓⃓

∂tζi + (v · ∇)ζi
⃓⃓⃓
≤ C dist2(·, Iv) in Ω ∩ ΨTi

(︂
Ti(t)×{t}×[−ˆ︁r, ˆ︁r])︂ (2.200)

for all t ∈ [0, T ]. Since we also have the coercivity estimate (2.169) for the bulk cutoff
at our disposal, we may thus upgrade (2.199) to (2.198) in Ω ∩ ΨTi

(︂
Ti(t)×{t}×[−ˆ︁r, ˆ︁r])︂ \⋃︁

c∈C Bˆ︁r(︂Tc(t))︂ for all t ∈ [0, T ].
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Step 2: (Estimate near contact points, part I) Fix c ∈ C, and denote by i ∈ I the unique
two-phase interface such that i ∼ c. This step is devoted to the proof of (2.198) in the wedge
Ω ∩Bˆ︁r(Tc(t)) ∩W c

Ti
(t) containing the interface Ti(t) ⊂ Iv(t), t ∈ [0, T ]. Because of (2.192),

(2.193) and (2.197) we have

∂tηbulk + (v · ∇)ηbulk = −
(︂
∂tζi + (v · ∇)ζi

)︂
+ ηbulk(v · ∇)ζi (2.201)

in Ω ∩Bˆ︁r(Tc(t)) ∩W c
Ti

(t) for all t ∈ [0, T ]. Due to Definition 17 of the admissible localization
radius rc and ˆ︁r ≤ rc by Lemma 26, it holds Bˆ︁r(Tc(t)) ∩ W c

Ti
(t) ⊂ ΨTi

(︂
Ti(t)×{t}×[−ˆ︁r, ˆ︁r])︂

for all t ∈ [0, T ]. In particular, the estimate (2.200) is applicable in Ω ∩Bˆ︁r(Tc(t)) ∩W c
Ti

(t) for
all t ∈ [0, T ]. Hence, the estimate (2.200) in combination with the coercivity estimate (2.169)
for the bulk cutoff allow to deduce (2.198) from (2.201) in Ω ∩ Bˆ︁r(Tc(t)) ∩ W c

Ti
(t) for all

t ∈ [0, T ].
Step 3: (Estimate near contact points, part II) Fix a contact point c ∈ C. The goal of this
step is to prove (2.198) in the wedges Ω ∩Bˆ︁r(Tc(t)) ∩W±,c

∂Ω (t) containing the boundary ∂Ω
for all t ∈ [0, T ]. To this end, it follows from (2.195) and (2.197) that

∂tηbulk + (v · ∇)ηbulk = −
(︂
∂tζc + (v · ∇)ζc

)︂
+ ηbulk(v · ∇)ζc (2.202)

in Ω ∩Bˆ︁r(Tc(t)) ∩W±,c
∂Ω (t) for all t ∈ [0, T ]. Note that because of (2.176) one can view the

profile ζc from (2.178) as a smooth function of the contact point Tc. Performing a slight yet
convenient abuse of notation Tc(t) = {c(t)}, we obtain as a consequence of d

dtc(t) = v(c(t), t)
and an application of the chain rule that ∂tζc(·, t) +

(︂
v(c(t), t) · ∇

)︂
ζc(·, t) = 0 at c(t) for all

t ∈ [0, T ]. Furthermore, proceeding similarly as done in the proof of [45, Lemma 11], we can
also deduce that ∂tζc(·, t) +

(︂
v(c(t), t) · ∇

)︂
ζc(·, t) = 0 in Ω ∩Bˆ︁r(Tc(t)) for all t ∈ [0, T ]. By

the regularity of the fluid velocity v, this in turn implies by adding zero (and exploiting the
quadratic behaviour of the profile ζ from (2.176) around the origin) that⃓⃓⃓

∂tζc + (v · ∇)ζc
⃓⃓⃓
≤ C dist2(·, Tc) in Ω ∩ Bˆ︁r(Tc(t)) (2.203)

for all t ∈ [0, T ]. Since ˆ︁r ≤ rc by Lemma 26, we can infer from Definition 17 of the admissible
localization radius rc that dist(·, Tc) is dominated by dist(·, Iv) in Bˆ︁r(Tc(t)) ∩

(︂
W±,c
∂Ω (t) ∪

W c
Ω±

v
(t)
)︂

for all t ∈ [0, T ]. Hence, we deduce from (2.203) that⃓⃓⃓
∂tζc + (v · ∇)ζc

⃓⃓⃓
≤ C dist2(·, Iv) in Ω ∩Bˆ︁r(Tc(t)) ∩

(︂
W±,c
∂Ω (t) ∪W c

Ω±
v

(t)
)︂

(2.204)

for all t ∈ [0, T ]. Inserting the estimate (2.204) and the coercivity estimate (2.169) for the
bulk cutoff into (2.202) thus yields (2.198) in Ω ∩ Bˆ︁r(Tc(t)) ∩W±,c

∂Ω (t) for all t ∈ [0, T ].
Step 4: (Estimate near contact points, part III) Fix c ∈ C, and denote by i ∈ I the unique
two-phase interface such that i ∼ c. We aim to verify (2.198) in the interpolation wedges
Ω ∩ Bˆ︁r(Tc(t)) ∩ W c

Ω±
v
(t) for all t ∈ [0, T ]. To this end, we may employ (2.192), (2.194)

and (2.197) to argue that

∂tηbulk + (v · ∇)ηbulk

= −λ±
c

{︃(︂
∂tζi + (v · ∇)ζi

)︂
− ηbulk(v · ∇)ζi

}︃
− (1−λ±

c )
{︃(︂
∂tζc + (v · ∇)ζc

)︂
− ηbulk(v · ∇)ζc

}︃
+
(︂
∂tλ

±
c + (v · ∇)λ±

c

)︂
(ζc − ζi)

(2.205)
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in Ω∩Bˆ︁r(Tc(t)) ∩W c
Ω±

v
(t) for all t ∈ [0, T ]. Due to Definition 17 of the admissible localization

radius rc and ˆ︁r ≤ rc by Lemma 26, it holds Bˆ︁r(Tc(t)) ∩W c
Ω±

v
(t) ⊂ ΨTi

(︂
Ti(t)×{t}×[−ˆ︁r, ˆ︁r])︂

for all t ∈ [0, T ]. The estimates (2.200) and (2.169) therefore imply that the first term on
the right hand side of (2.205) is of required order. For the second term on the right hand side
of (2.205), we may instead rely on the estimates (2.204) and (2.169).

Note that in view of the definitions (2.176)–(2.178), the auxiliary cutoffs ζi and ζc are
compatible to second order in the sense that |ζi−ζc| ≤ C dist2(·, Tc) in Ω∩Bˆ︁r(Tc(t))∩W c

Ω±
v

(t)
for all t ∈ [0, T ]. Recall from the previous step that dist(·, Tc) is dominated by dist(·, Iv) in
Bˆ︁r(Tc(t)) ∩

(︂
W±,c
∂Ω (t) ∪W c

Ω±
v

(t)
)︂

for all t ∈ [0, T ]. Hence,

|ζi − ζc| ≤ C dist2(·, Iv) (2.206)

in Ω ∩ Bˆ︁r(Tc(t)) ∩ W c
Ω±

v
(t) for all t ∈ [0, T ]. In particular, together with (2.156) the

bound (2.206) allows to upgrade (2.205) to the desired estimate (2.198) in Ω ∩Bˆ︁r(Tc(t)) ∩
W c

Ω±
v

(t) for all t ∈ [0, T ].

Step 5: (Conclusion) Recall from Definition 17 of the admissible localization radius rc that for
all t ∈ [0, T ] the set Ω ∩Brc(Tc(t)) is decomposed by means of the five pairwise disjoint open
wedges W±,c

∂Ω (t),W c
Ti

(t),W c
Ω±

v
(t) ⊂ R2. Hence, the previous three steps entail the validity

of (2.198) in Ω ∩ Brc(Tc(t)) for all t ∈ [0, T ]. In particular, based on the discussion at the
beginning of this proof and the argument in the vicinity of the interface but away from contact
points (see Step 1), we may conclude the proof of Lemma 26.

2.6.2 Proof of Proposition 7
All ingredients are in place to proceed with the proof of the main result of this section, i.e., that
the vector field ξ of Construction 27 gives rise to a boundary adapted extension of the interface
unit normal for two-phase fluid flow in the sense of Definition 2 with respect to (χv, v).

Proof of (2.16a). This is an easy consequence of the lower bound in the coercivity esti-
mate (2.169) for the bulk cutoff, the definition (2.197) of the global vector field ξ, the fact
that the local vector fields (ξn)n∈{1,...,N} as provided by Proposition 15 and Proposition 16
are of unit length, and the triangle inequality in form of |ξ| = |∑︁N

n=1 ηnξn| ≤ ∑︁N
n=1 ηn|ξn| =∑︁N

n=1 ηn = 1 − ηbulk in Ω × [0, T ].

Proof of (2.16b). By definition (2.197) of the candidate extension ξ and the localization
properties (2.171)–(2.175) of the partition of unity (η1, . . . , ηN) from Lemma 26, it suffices
to verify (2.16b) in terms of ξ = ηcξ

c in the associated region Bˆ︁r(Tc(t)) ∩ ∂Ω for all contact
points c ∈ C and all t ∈ [0, T ]. However, this in turn is an immediate consequence of
Proposition 16.

Proof of (2.16c). For a proof of (2.16c), we start computing based on the definition (2.197)
of the global vector field ξ that ∇ · ξ = ∑︁N

n=1 ηn∇ · ξn +∑︁N
n=1(ξn · ∇)ηn. As a consequence

of the corresponding local versions of (2.16c) from Proposition 15 and Proposition 16, and
the fact that (η1, . . . , ηn) is a partition of unity along the interface Iv by Lemma 26 we obtain∑︁N
n=1 ηn∇ · ξn = −HIv along Iv ∩ Ω. Moreover, by adding zero and subsequently relying on

the definition (2.197) of the global vector field ξ, the localization properties (2.171)–(2.175)
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of the partition of unity (η1, . . . , ηN ) from Lemma 26, the compatibility estimate (2.115) and
the estimates (2.169) and (2.170) for the bulk cutoff we may infer that

N∑︂
n=1

(ξn · ∇)ηn = −(ξ · ∇)ηbulk −
N∑︂
n=1

((ξ − ξn) · ∇)ηn

= −(ξ · ∇)ηbulk + ηbulk

N∑︂
n=1

(ξn · ∇)ηn

+
∑︂
i∈I

∑︂
c∈C,i∼c

ηc
(︂
(ξi−ξc) · ∇ηi) +

∑︂
c∈C

∑︂
i∈I,i∼c

ηi
(︂
(ξc−ξi) · ∇ηc)

= O(1 ∧ dist(·, Iv)) in Ω × [0, T ].

In summary, we thus obtain (2.16c).

Proof of (2.16d). For a proof of (2.16d), we start estimating based on the definition (2.197)
of the global vector field ξ as well as the corresponding local versions of (2.16d) from
Proposition 15 and Proposition 16

∂tξ =
N∑︂
n=1

ηn∂tξ
n +

N∑︂
n=1

ξn∂tηn

= −
N∑︂
n=1

ηn(v · ∇)ξn +
N∑︂
n=1

ξn∂tηn (2.207)

−
N∑︂
n=1

ηn(Id−ξn ⊗ ξn)(∇v)Tξn +O(1 ∧ dist(·, Iv)) in Ω × [0, T ].

Adding zero twice and applying the product rule, we may further rewrite based on the
definition (2.197) of the candidate extension ξ and the localization properties (2.171)–(2.175)
of the partition of unity (η1, . . . , ηN) from Lemma 26

−
N∑︂
n=1

ηn(v · ∇)ξn +
N∑︂
n=1

ξn∂tηn

= −(v · ∇)ξ +
N∑︂
n=1

ξn
(︂
∂tηn + (v · ∇)ηn

)︂

= −(v · ∇)ξ − ξ
(︂
∂tηbulk + (v · ∇)ηbulk

)︂
+

N∑︂
n=1

(ξn−ξ)
(︂
∂tηn + (v · ∇)ηn

)︂

= −(v · ∇)ξ − ξ
(︂
∂tηbulk + (v · ∇)ηbulk

)︂
+ ηbulk

N∑︂
n=1

ξn
(︂
∂tηn + (v · ∇)ηn

)︂
+
∑︂
i∈I

∑︂
c∈C,i∼c

ηc(ξi−ξc)
(︂
∂tηi+(v · ∇)ηi

)︂
+
∑︂
c∈C

∑︂
i∈I,i∼c

ηi(ξc−ξi)
(︂
∂tηc+(v · ∇)ηc

)︂

in Ω × [0, T ]. Hence, estimating based on the compatibility estimate (2.115) as well as the
estimates (2.169) and (2.198) for the bulk cutoff yields the bound

−
N∑︂
n=1

ηn(v · ∇)ξn +
N∑︂
n=1

ξn∂tηn = −(v · ∇)ξ +O(1 ∧ dist(·, Iv)) in Ω × [0, T ]. (2.208)

Adding zero twice and making use of the definition (2.197) of the candidate extension ξ
together with the localization properties (2.171)–(2.175) of the partition of unity (η1, . . . , ηN )
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from Lemma 26, we next compute

1supp ηnξ
n ⊗ ξn (2.209)

= 1supp ηnξ ⊗ ξ + 1supp ηn(ξn−ξ) ⊗ ξn + 1supp ηnξ ⊗ (ξn−ξ)
= 1supp ηnξ ⊗ ξ

+ 1supp ηnηbulkξ
n ⊗ ξn + 1supp ηnηbulkξ ⊗ ξn

+ 1n=i∈I1supp ηi

∑︂
c∈C,i∼c

ηc(ξi−ξc) ⊗ ξi + 1n=c∈C1supp ηc

∑︂
i∈I,i∼c

ηi(ξc−ξi) ⊗ ξc

+ 1n=i∈I1supp ηi

∑︂
c∈C,i∼c

ηcξ ⊗ (ξi−ξc) + 1n=c∈C1supp ηc

∑︂
i∈I,i∼c

ηiξ ⊗ (ξc−ξi)

in Ω × [0, T ]. Relying on the same ingredients as for the previous computation we also have

−
N∑︂
n=1

ηn(∇v)Tξn = −(∇v)Tξ −
N∑︂
n=1

ηn(∇v)T(ξn−ξ) + ηbulk(∇v)Tξ

= −(∇v)Tξ + ηbulk(∇v)Tξ − ηbulk

N∑︂
n=1

ηn(∇v)Tξn

−
∑︂
i∈I

∑︂
c∈C,i∼c

ηiηc(∇v)T(ξi−ξc) −
∑︂
c∈C

∑︂
i∈I,i∼c

ηcηi(∇v)T(ξc−ξi)

in Ω × [0, T ]. The compatibility estimate (2.115) as well as the estimates (2.169) and (2.198)
therefore imply in view of the previous two displays that

−
N∑︂
n=1

ηn(Id−ξn ⊗ ξn)(∇v)Tξn

= −(Id−ξ ⊗ ξ)(∇v)Tξ +O(1 ∧ dist(·, Iv)) in Ω × [0, T ].
(2.210)

The combination of the bounds (2.207)–(2.210) now immediately entails the desired esti-
mate (2.16d) on the time evolution of the global vector field ξ.

Proof of (2.16e). We get as a consequence of the product rule and inserting the local versions
of (2.16e) from Proposition 15 and Proposition 16

ξ · ∂tξ =
N∑︂
n=1

ηnξ · ∂tξn +
N∑︂
n=1

(ξ · ξn)∂tηn

= −
N∑︂
n=1

ηnξ
n · (v · ∇)ξn +

N∑︂
n=1

ηn(ξ−ξn) · ∂tξn

+
N∑︂
n=1

(ξ · ξn)∂tηn +O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ].

Adding zero to produce the left hand sides of the local versions of (2.16d) from Proposition 15
and Proposition 16 further updates the previous display to

ξ · ∂tξ = −
N∑︂
n=1

ηnξ · (v · ∇)ξn +
N∑︂
n=1

(ξ · ξn)∂tηn

−
N∑︂
n=1

ηn(ξ−ξn) · (Id −ξn ⊗ ξn)(∇v)Tξn
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+
N∑︂
n=1

ηn(ξ−ξn) ·
(︂
∂tξ

n+(v · ∇)ξn+(Id −ξn ⊗ ξn)(∇v)Tξn
)︂

+O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ].

We then continue with adding zeros to obtain

ξ · ∂tξ = −ξ · (v · ∇)ξ

+
N∑︂
n=1

(︂
ξ · (ξn−ξ)

)︂(︂
∂tηn+(v · ∇)ηn

)︂
− |ξ|2

(︂
∂tηbulk+(v · ∇)ηbulk

)︂

−
N∑︂
n=1

ηn(ξ−ξn) · (ξ ⊗ ξ − ξn ⊗ ξn)(∇v)Tξn

−
N∑︂
n=1

ηn(ξ−ξn) · (Id −ξ ⊗ ξ)(∇v)T(ξn − ξ)

+
N∑︂
n=1

ηn(ξ−ξn) ·
(︂
∂tξ

n+(v · ∇)ξn+(Id −ξn ⊗ ξn)(∇v)Tξn
)︂

+O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ].

(2.211)

As it is by now routine, we may employ the localization properties (2.171)–(2.175) of the
partition of unity (η1, . . . , ηN) from Lemma 26 and the estimates (2.169) and (2.198) for
the bulk cutoff to reduce the task of estimating the right hand side terms of (2.211) to
an application of the compatibility estimates (2.115)–(2.116). More precisely, we obtain by
straightforward applications of these two ingredients that

N∑︂
n=1

(︂
ξ · (ξ−ξn)

)︂(︂
∂tηn+(v · ∇)ηn

)︂
=
∑︂
i∈I

∑︂
c∈C,i∼c

η2
c

(︂
(ξc−ξi) · (ξc−ξi)

)︂(︂
∂tηi+(v · ∇)ηi

)︂
(2.212)

+
∑︂
c∈C

∑︂
i∈I,i∼c

ηcηi
(︂
(ξc − ξi) · (ξi−ξc)

)︂(︂
∂tηc+(v · ∇)ηc

)︂
+
∑︂
i∈I

∑︂
c∈C,i∼c

η2
c

(︂
ξi · (ξc−ξi)

)︂(︂
∂tηi+(v · ∇)ηi

)︂
+
∑︂
c∈C

∑︂
i∈I,i∼c

ηcηi
(︂
ξi · (ξi−ξc)

)︂(︂
∂tηc+(v · ∇)ηc

)︂
+
∑︂
i∈I

∑︂
c∈C,i∼c

ηiηc
(︂
ξi · (ξc−ξi)

)︂(︂
∂tηi+(v · ∇)ηi

)︂
+
∑︂
c∈C

∑︂
i∈I,i∼c

η2
i

(︂
ξi · (ξi−ξc)

)︂(︂
∂tηc+(v · ∇)ηc

)︂
+O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ],

N∑︂
n=1

ηn(ξ−ξn) · (Id −ξ ⊗ ξ)(∇v)T(ξ−ξn)

=
∑︂
i∈I

∑︂
c∈C,i∼c

ηiη
2
c (ξc−ξi) · (Id −ξ ⊗ ξ)(∇v)T(ξc−ξi) (2.213)

+
∑︂
c∈C

∑︂
i∈I,i∼c

ηcη
2
i (ξi−ξc) · (Id −ξ ⊗ ξ)(∇v)T(ξi−ξc)

+O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ],
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N∑︂
n=1

ηn(ξ−ξn) ·
(︂
∂tξ

n+(v · ∇)ξn+(Id −ξn ⊗ ξn)(∇v)Tξn
)︂

=
∑︂
i∈I

∑︂
c∈C

ηiηc(ξc−ξi) ·
(︂
∂tξ

i+(v · ∇)ξi+(Id −ξi ⊗ ξi)(∇v)Tξi
)︂

(2.214)

+
∑︂
c∈C

∑︂
i∈I,i∼c

ηcηi(ξi−ξc) ·
(︂
∂tξ

c+(v · ∇)ξc+(Id −ξc ⊗ ξc)(∇v)Tξc
)︂

+O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ],

and finally
N∑︂
n=1

ηn(ξ−ξn) · (ξ ⊗ ξ − ξn ⊗ ξn)(∇v)Tξn

=
∑︂
i∈I

∑︂
c∈C,i∼c

ηc(ξc−ξi) · (ξ ⊗ ξ − ξi ⊗ ξi)(∇v)Tξi (2.215)

+
∑︂
c∈C

∑︂
i∈I,i∼c

ηi(ξi−ξc) · (ξ ⊗ ξ − ξc ⊗ ξc)(∇v)Tξc

+O(dist(·, Iv)2 ∧ 1) in Ω × [0, T ].

We then exploit the compatibility estimates (2.115) and (2.116) for an estimate of (2.212), the
compatibility estimate (2.115) for an estimate of (2.213), the local versions of (2.16d) from
Proposition 15 and Proposition 16 in combination with the compatibility estimate (2.115) for an
estimate of (2.214), and finally (2.209) together with the estimate for the bulk cutoff (2.169)
and the compatibility estimate (2.115) to estimate (2.215). In summary, using also the
bound on the advection derivative (2.198) as well as the coercivity estimate (2.169), we may
upgrade (2.211) to the desired estimate (2.16e).

2.7 Existence of transported weights: Proof of Lemma 8
We decompose the argument for the construction of a transported weight ϑ in the sense of
Definition 3 in several steps.
Step 1: (Choice of suitable profiles) Let ϑ̄ : R → R be chosen such that it represents a smooth
truncation of the identity in the sense that ϑ̄(r) = r for |r| ≤ 1

2 , ϑ̄(r) = −1 for r ≤ −1,
ϑ̄(r) = 1 for r ≥ 1, 0 ≤ ϑ̄

′ ≤ 2 as well as |ϑ̄′′| ≤ C.
For each two-phase interface i ∈ I present in the interface Iv of the strong solution, we then
define an auxiliary weight

ϑ̄i(x, t) := −ϑ̄
(︃sdist(x, Ti(t))

δˆ︁r
)︃
, (x, t) ∈ im(ΨTi

) (2.216)

where the change of variables ΨTi
and the associated signed distance sdist(·, Ti) are the

ones from Definition 13 of the admissible localization radius ri. Moreover, ˆ︁r represents the
localization scale of Lemma 26 and δ ∈ (0, 1] denotes a constant to be chosen in the course
of the proof.
Recalling also from Definition 17 of the admissible localization radii (rc)c∈C the definition of
the change of variables Ψ∂Ω with associated signed distance sdist(·, ∂Ω) we define another
two auxiliary weights by means of

ϑ̄
±
∂Ω(x, t) := ∓ϑ̄

(︃sdist(x, ∂Ω)
δˆ︁r

)︃
, (2.217)
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(x, t) ∈
⋃︂

t′∈[0,T ]

(︂
Ω±
v (t′) ∩ Ψ∂Ω

(︂
∂Ω×(−2ˆ︁r, 2ˆ︁r))︂)︂×{t′}.

Step 2: (Construction of the transported weight) Away from contact points and the interface
but in the vicinity of the domain boundary, we introduce the following notational shorthand

Uˆ︁r(t) :=
⋃︂
i∈I

ΨTi

(︂
Ti(t)×{t}×[−ˆ︁r, ˆ︁r])︂ ∪

⋃︂
c∈C

Bˆ︁r(︂Tc(t))︂, t ∈ [0, T ], (2.218)

and then define

ϑ(x, t) := ϑ̄
±
∂Ω(x, t), (2.219)

(x, t) ∈
⋃︂

t′∈[0,T ]

(︂
Ω±
v (t′) ∩ Ψ∂Ω

(︂
∂Ω×[−ˆ︁r, ˆ︁r])︂ \ Uˆ︁r(t′))︂×{t′}.

Fix next a two-phase interface i ∈ I. Away from contact points but in the vicinity of the
interface, we then define

ϑ(x, t) := ϑ̄i(x, t), (2.220)

(x, t) ∈
⋃︂

t′∈[0,T ]

(︄
Ω ∩ ΨTi

(︂
Ti(t′)×{t′}×[−ˆ︁r, ˆ︁r])︂ \

⋃︂
c∈C

Bˆ︁r(︂Tc(t′))︂
)︄

×{t′}.

Let now a contact point c ∈ C be fixed, and denote by i ∈ I the unique two-phase interface
with i ∼ c. Recall from Definition 17 of the admissible localization radius rc that for all
t ∈ [0, T ] we decomposed Ω ∩ Brc(Tc(t)) by means of five pairwise disjoint open wedges
W±,c
∂Ω (t),W c

Ti
(t),W c

Ω±
v

(t) ⊂ R2. In the wedge W c
Ti

containing the two-phase interface Ti ⊂ Iv,
we still define

ϑ(x, t) := ϑ̄i(x, t), (x, t) ∈
⋃︂

t′∈[0,T ]

(︂
Ω ∩Bˆ︁r(︂Tc(t′))︂ ∩W c

Ti
(t′)

)︂
×{t′}. (2.221)

In the wedges W±,c
∂Ω containing the domain boundary ∂Ω, we instead set

ϑ(x, t) := ϑ̄
±
∂Ω(x, t), (x, t) ∈

⋃︂
t′∈[0,T ]

(︂
Ω ∩ Bˆ︁r(︂Tc(t′))︂ ∩W±,c

∂Ω (t′)
)︂
×{t′}. (2.222)

In the interpolation wedges W c
Ω±

v
, we make use of the interpolation parameter λ±

c of Lemma 24
to interpolate between the two constructions near the interface (2.221) and near the domain
boundary (2.222). Recall in this context the convention that λ±

c (·, t) was set equal to one on(︂
∂W c

Ω±
v

(t) ∩ ∂W c
Ti

(t)
)︂

\ Tc(t) and set equal to zero on
(︂
∂W c

Ω±
v

(t) ∩ ∂W±,c
∂Ω (t)

)︂
\ Tc(t) for all

t ∈ [0, T ]. With this notation in place, we define on the interpolation wedges

ϑ(x, t) := λ±
c (x, t)ϑ̄i(x, t) + (1−λ±

c (x, t))ϑ̄±
∂Ω(x, t), (2.223)

(x, t) ∈
⋃︂

t′∈[0,T ]

(︂
Ω ∩ Bˆ︁r(︂Tc(t′))︂ ∩W c

Ω±
v

(t′)
)︂
×{t′}.

Finally, choosing δ small enough in the definition (2.216) of the auxiliary weights (ϑi)i∈I and
recalling the localization properties (2.179)–(2.181) of the scale ˆ︁r, it is safe to define in the
space-time domain not captured by the definitions (2.219)–(2.223)

ϑ(x, t) := ∓1, (2.224)
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(x, t) ∈
⋃︂

t′∈[0,T ]

(︂
Ω±
v (t′) \

(︂
Uˆ︁r(t′) ∪ Ψ∂Ω(∂Ω×[−ˆ︁r, ˆ︁r]))︂)︂×{t′}.

Recall for this definition also the notation (2.218).

Step 3: (Regularity and coercivity) The validity of the asserted sign conditions in Definition 3
are immediate from (2.219)–(2.224). Since the first-order derivatives of the interpolation
parameter λ±

c feature controlled blow-up (2.154), it is also a direct consequence of the
definitions (2.219)–(2.224) that ϑ ∈ W 1,∞

x,t (Ω × [0, T ]) as asserted.

In view of the definition (2.224) of the weight in the bulk it suffices to establish (2.27) in
the regions Ω ∩ Ψ∂Ω

(︂
∂Ω×[−ˆ︁r, ˆ︁r])︂ \ Uˆ︁r(t), Ω ∩ ΨTi

(︂
Ti(t)×{t}×[−ˆ︁r, ˆ︁r])︂ \⋃︁c∈C Bˆ︁r(︂Tc(t))︂ and

Ω ∩Bˆ︁r(Tc(t)) for all i ∈ I, all c ∈ C and all t ∈ [0, T ]. However, in these regions the asserted
estimate (2.27) is immediately implied by the properties of the truncation of unity ϑ̄ from
Step 1 of this proof and the definitions (2.219)–(2.223).

Step 4: (Advection equation) Because of the definition (2.224) of the weight ϑ in the
bulk, it suffices to establish (2.28) in the regions Ω ∩ Ψ∂Ω

(︂
∂Ω×[−ˆ︁r, ˆ︁r])︂ \ Uˆ︁r(t), Ω ∩

ΨTi

(︂
Ti(t)×{t}×[−ˆ︁r, ˆ︁r])︂ \ ⋃︁c∈C Bˆ︁r(︂Tc(t))︂ and Ω ∩ Bˆ︁r(Tc(t)) for all i ∈ I, all c ∈ C and all

t ∈ [0, T ].

Observe first that it follows from the definitions (2.217), (2.219) and (2.222) as well as the
boundary condition for the fluid velocity (v · n∂Ω)|∂Ω = 0 that

∂tϑ+ (v · ∇)ϑ = 0 along ∂Ω \
⋃︂
c∈C

Tc(t) (2.225)

for all t ∈ [0, T ]. By a Lipschitz estimate together with the coercivity estimate (2.27), the
desired estimate (2.28) follows in Ω ∩ Ψ∂Ω

(︂
∂Ω×[−ˆ︁r, ˆ︁r])︂ \ Uˆ︁r(t) for all t ∈ [0, T ].

Fix next a two-phase interface i ∈ I. We then claim that⃓⃓⃓
∂tϑ̄i + (v · ∇)ϑ̄i

⃓⃓⃓
≤ C dist(·, Iv) in Ω ∩ ΨTi(t)

(︂
Ti(t)×[−ˆ︁r, ˆ︁r])︂ (2.226)

for all t ∈ [0, T ]. Indeed, one only needs to recall that the signed distance to the two-phase
interface Ti ⊂ Iv is transported by the fluid velocity v to first order in the distance to
the interface. In particular, combining (2.226) with the definition (2.220) and the coercivity
estimate (2.27) entails (2.28) in Ω∩ΨTi

(︂
Ti(t)×{t}×[−ˆ︁r, ˆ︁r])︂\⋃︁c∈C Bˆ︁r(︂Tc(t))︂ for all t ∈ [0, T ].

Let now a contact point c ∈ C be given, and let i ∈ I be the unique two-phase interface
such that i ∼ c. The desired estimate (2.28) follows immediately from (2.226) and (2.221) in
the wedge Ω ∩Bˆ︁r(︂Tc(t))︂ ∩W c

Ti
(t) for all t ∈ [0, T ]. For the wedges containing the domain

boundary ∂Ω, the estimate (2.28) in form of⃓⃓⃓
∂tϑ̄

±
∂Ω + (v · ∇)ϑ̄±

∂Ω

⃓⃓⃓
≤ C dist(·, ∂Ω) in Ω ∩ Bˆ︁r(︂Tc(t))︂ ∩

(︂
W c

Ω±
v

(t) ∪W±,c
∂Ω (t)

)︂
(2.227)

for all t ∈ [0, T ], is satisfied because of the analogue of (2.225) and a Lipschitz estimate.
Finally, in the interpolation wedges one may estimate

|∂tϑ+(v · ∇)ϑ| ≤ |ϑ̄i − ϑ̄
±
∂Ω||∂tλ±

c +(v · ∇)λ±
c |

+ λ±
c |∂tϑ̄i+(v · ∇)ϑ̄i| + (1−λ±

c )|∂tϑ̄
±
∂Ω+(v · ∇)ϑ̄±

∂Ω|.
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The desired bound thus follows from the estimate (2.156) for the advective derivative of the
interpolation parameter λ±

c , the estimates (2.226) and (2.227), and the fact that the auxiliary
weights from (2.216) and (2.217) are compatible in the sense

|ϑ̄i − ϑ̄
±
∂Ω| ≤ C(dist(·, ∂Ω) ∧ dist(·, Iv))

in Ω ∩ Bˆ︁r(︂Tc(t)) ∩W c
Ω±

v
(t) for all t ∈ [0, T ]. This concludes the proof of Lemma 8.

2.8 Existence of varifold solutions to two-phase fluid
flow with surface tension

The aim of this last section is to give a sketch of a proof regarding existence of varifold
solutions to two-phase fluid flow with surface tension and with ninety degree contact angle (see
Definition 11). Note that this is not treated by the work of Abels [1] in which the existence of
a varifold solution in the presence of surface tension is only established in a full space setting.
However, in principle it still suggests itself to follow, where possible, the structure of the proof
for the case of an unbounded domain by Abels [1]. In this regard, we first discuss two tools
which are needed due to the different setting of the present work, i.e., geometric evolution
with a ninety degree contact angle condition and the associated boundary conditions for the
solenoidal fluid velocity. These tools concern an existence result for weak solutions to the
required transport equation (for sufficiently regular transport velocities) and elliptic regularity
estimates for the Helmholtz decomposition associated with the bounded and smooth domain Ω.
In a second step, we present the corresponding approximate problem, focusing again on the
key steps of the proof which differ with respect to the case of an unbounded domain studied by
Abels [1]. Note that analogous to the existence theory of [1], we will assume some regularity
for the geometry of the initial data and, for simplicity, that the densities of the two fluids
coincide and are normalized to 1.
Transport equation. In order to construct approximate solutions of the two-phase flow with
surface tension and with ninety degree contact angle, one first needs an existence result for
weak solutions to the transport equation in a bounded domain. In particular, it suffices to
motivate the validity of [1, Lemma 2.3, Ω ≡ Rd] in case of a smooth and bounded domain
Ω ⊂ Rd, d ∈ {2, 3}.
To this aim, let the open subset Ω+

0 ⊂ Ω be subject to the regularity conditions in Definition 9,
let χ0 := χΩ+

0
∈ BV(Ω; {0, 1}), let T ∈ (0,∞), and consider a sufficiently regular fluid velocity

v ∈ C([0, T ];C2
b (Ω)) ∩C(Ω×[0, T ]) such that div v = 0 in Ω and (n∂Ω · v)|∂Ω = 0. Consider

any C([0, T ];C2
b (Rd)) extension of v which we denote by ˜︁v. Then, a solution ˜︁χ to the transport

equation associated with ˜︁v can be constructed on Rd by the usual method of characteristics
(see, e.g., [1, Proof of Lemma 2.3]). The associated flow map is a C1-diffeomorphism at any
time t ∈ [0, T ]. However, note that it maps ∂Ω onto itself, due to v|∂Ω = ˜︁v|∂Ω being tangential
along ∂Ω. Moreover, since the flow map is a global diffeomorphism (and since continuous
images of connected sets are connected), it also maps Ω onto itself. Then, one can conclude
by means of the same computations as in the proof of [1, Lemma 2.3] — using in the process
the fact that div v = 0 in Ω — that the restriction χ := ˜︁χ|Ω×[0,T ] ∈ L∞(0, T ; BV(Ω; {0, 1}))
is a weak solution of the transport equation associated with v in the sense of

ˆ T

0

ˆ
Ω
χ (∂tφ+ v · ∇φ) dxdt+

ˆ
Ω
χ0φ(x, 0)dx = 0 (2.228)
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for any φ ∈ C1
c ([0, T );C(Ω)) ∩ Cc([0, T );C1(Ω)). Moreover, we have

∥χ∥L∞(0,T ;BV (Ω)) ⩽M
(︃

∥v∥C([0,T ];C2
b

(Ω))
)︃

∥χ0∥BV (Ω) , (2.229)
d
dt |∇χ(·, t)| (Ω) = −

⟨︂
Hχ(·,t), v(·, t)

⟩︂
for all t ∈ (0, T ) (2.230)

for some continuous function M . Note that the latter holds because the 90 degree contact
angle condition is preserved by sufficiently regular transport velocities (see, e.g., the remark
after Definition 10).
Helmholtz decomposition associated with bounded domains. We recall properties of the
Helmholtz projection PΩ associated with the smooth bounded domain Ω, referring the reader
to [101, Corollaries 7.4.4-5] (see also [116]).
Define Wp(Ω) := {g ∈ W 1,p(Ω;Rd) : div g = 0, (g · n∂Ω)|∂Ω = 0}. Given f ∈ W 1,p(Ω;Rd),
2 ≤ p < ∞, there are unique functions ϕ ∈ W 2,p(Ω) and w ∈ Wp(Ω) such that f = ∇ϕ+ w.
The bounded linear operator PΩ ∈ B(W 1,p(Ω;Rd),Wp(Ω)) defined by PΩf := w is a projection,
which is the Helmholtz projection associated with the smooth bounded domain Ω. Moreover,
if f ∈ W 2,p(Ω;Rd) it holds ϕ ∈ W 3,p(Ω) and

∥PΩf∥W 2,p(Ω;Rd) ≤ C∥f∥W 2,p(Ω;Rd), (2.231)

and if f ∈ W k,2(Ω;Rd), k ≥ 2, then ϕ ∈ W k,2(Ω) and

∥PΩf∥Wk,2(Ω;Rd) ≤ C∥f∥Wk,2(Ω;Rd). (2.232)

This follows from existence and regularity theory of the associated Neumann problem (see for
the case p > 2 the result of [101, Corollary 7.4.5])

∆ϕ = div f in Ω,
(n∂Ω · ∇)ϕ = f · n∂Ω on ∂Ω.

Solutions to approximate two-phase fluid flow. In order to formulate the approximate equations,
let ψ be a standard mollifier, for every k ∈ N we denote by ψk := kdψ(k·) its usual rescaling,
and by PΩ the Helmholtz projection associated with the smooth domain Ω. Moreover, let
Ψk· = PΩ(ψk ∗ ·). Consider the initial data v0 ∈ L2(Ω) with div v0 = 0 and (n∂Ω · v0)|∂Ω = 0,
and let χ0 := χΩ+

0
∈ BV(Ω; {0, 1}), where Ω+

0 ⊂ Ω is subject to the regularity conditions
in Definition 9. Let µ, σ > 0. Then, we consider an approximate two-phase flow on
(0, Tw), Tw ∈ (0,∞). This is a pair (vk, χk) consisting on one side of a fluid velocity field
vk ∈ L∞([0, Tw];L2(Ω)) ∩ L2([0, Tw];W2(Ω)) solving

ˆ
Ω
vk(·, T ) · η(·, T ) dx−

ˆ
Ω
v0 · η(·, 0) dx−

ˆ T

0

ˆ
Ω
vk · ∂tη dx dt

−
ˆ T

0

ˆ
Ω

Ψkvk ⊗ (ψk ∗ vk) : ∇(ψk ∗ η) dx dt+
ˆ T

0

ˆ
Ω
µ(∇vk + ∇vT

k ) : ∇η dx dt

= σ

ˆ T

0

ˆ
∂∗{χk=1}∩Ω

Hχk
· Ψkη dS dt (2.233)

for a.e. T ∈ [0, Tw) and every η ∈ C∞([0, Tw);C1(Ω;Rd) ∩⋂︁p≥2 W
2,p(Ω;Rd)) with div η = 0

and (n∂Ω · η)∂Ω = 0, and on the other side an evolving phase indicator χk ∈ L∞([0, Tw];
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BV(Ω; {0, 1})) which is the unique weak solution — in the sense of (2.228) — to the transport
equation

∂tχk + (Ψkvk) · ∇χk = 0 in (0, Tw) × Ω,
χk|t=0 = χ0 in Ω.

The existence of approximate solutions (vk, χk) satisfying the energy equality

1
2∥vk(·, T )∥2

L2(Ω) + σ|∇χk(·, T )|(Ω) + µ

2 ∥∇vk∥2
L2(Ω×(0,T ))

= 1
2∥v0∥2

L2(Ω) + σ|∇χ0|(Ω), T ∈ (0, Tw), (2.234)

and satisfying

the map (0, Tw) ∋ t ↦→ |∇χk(·, t)|(Ω) is absolutely continuous, (2.235)

can then be proved by means of a fixed-point argument as done in [1, Proof of Theorem 4.2],
relying in the process on the above two ingredients corresponding to the different setting of
the present work: the existence result for weak solutions to the transport equation (2.228)
with sufficiently regular transport velocity, and the elliptic regularity estimates (2.232) for the
Helmholtz projection associated with Ω. In particular, one obtains uniform bounds

sup
k∈N

sup
t∈(0,Tw)

∥vk(·, t)∥2
L2(Ω) + sup

k∈N
∥∇vk∥2

L2(Ω×(0,Tw)) < ∞, (2.236)

sup
k∈N

sup
t∈(0,Tw)

|∇χk(·, t)|(Ω) < ∞. (2.237)

Limit passage in the approximation scheme to a varifold solution. As for the passage to the
limit, we only discuss the surface tension term on the right hand side of the approximate
problem (2.233) as well as the validity of the energy inequality (2.41). The other terms as
well as the passage to the limit in the transport equation can be treated as in [1]. First, we
define a varifold Vk ∈ M((0, Tw) × Ω × Sd−1) by

Vk := L1⌞(0, Tw) ⊗ (Vk(t))t∈(0,Tw) , (2.238)

where

Vk(t) := |∇χk(·, t)|⌞Ω ⊗
(︂
δ ∇χk(·,t)

|∇χk(·,t)|

)︂
x∈Ω

∈ M(Ω×Sd−1) for any t ∈ (0, Tw).

Since χk ∈ L∞([0, Tw]; BV(Ω; {0, 1})) is uniformly bounded in the sense of (2.237), there
then exists χ ∈ L∞([0, Tw]; BV(Ω; {0, 1})) such that, up to taking a subsequence,

χk ⇀
∗ χ in L∞(Ω×(0, Tw)), (2.239)

∇χk ⇀∗ ∇χ in L∞([0, Tw]; M(Ω)). (2.240)

Moreover, we have supk ∥Vk∥M < ∞ due to (2.237) and the definition of Vk. In particular,
there exists V ∈ M((0, Tw) × Ω × Sd−1) such that, up to taking a subsequence,

Vk ⇀
∗ V in M((0, Tw) × Ω × Sd−1). (2.241)

Note that the compatibility condition (2.42) then simply follows from exploiting (2.240)
and (2.241). As a preparation for the remaining arguments, note also that thanks to the
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condition (2.235) a careful inspection of the argument of [56, Lemma 2] reveals that one may
disintegrate the limit varifold V in form of

V = L1⌞(0, Tw) ⊗ (Vt)t∈(0,Tw) , Vt ∈ M(Ω×Sd−1), t ∈ (0, Tw), (2.242)

and that the limit interface energy satisfies

|Vt|Sd−1(Ω) ≤ lim inf
k

|∇χk(·, t)|(Ω) for a.e. t ∈ [0, Tw). (2.243)

For any η ∈ C∞([0, Tw);C1(Ω;Rd)∩⋂︁p≥2 W
2,p(Ω;Rd)) such that div η = 0 and (η·n∂Ω)|∂Ω =

0, we discuss the limit of
ˆ T

0

ˆ
Ω

(︄
Id − ∇χk

|∇χk|
⊗ ∇χk

|∇χk|

)︄
: ∇(Ψkη) d|∇χk| dt for k → ∞,

for almost every T ∈ [0, Tw). By adding a zero, we obtain
ˆ T

0

ˆ
Ω

(︄
Id − ∇χk

|∇χk|
⊗ ∇χk

|∇χk|

)︄
: ∇(Ψkη − η) d|∇χk| dt

+
ˆ T

0

ˆ
Ω×Sd−1

(Id −s⊗ s) : ∇η dVk(t, x, s) ,

where the second term converges to
´ T

0

´
Ω×Sd−1 (Id −s⊗ s) : ∇η dVt(x, s) for k → ∞

for any η ∈ C∞
0 ([0, Tw);C1(Ω;Rd) ∩ ⋂︁

p≥2 W
2,p(Ω;Rd)). Indeed, the latter guarantees

(Id−s⊗ s) : ∇η ∈ C0((0, Tw)×Ω×Sd−1) so that one may use (2.241) for such η. However,
the additional support assumption on the time variable can be removed by means of a standard
truncation argument relying on the disintegration formulas (2.238) and (2.242), respectively,
and the uniform bound supk ∥Vk∥M < ∞. As for the first term, we exploit the regularity
properties of the Helmholtz projection. More precisely, we may estimate for any p > 3 based
on (2.231) and the Sobolev embedding W 1,p(Ω) ↪→ C(Ω), d ∈ {2, 3},⃓⃓⃓⃓

⃓
ˆ T

0

ˆ
Ω

(︄
Id − ∇χk

|∇χk|
⊗ ∇χk

|∇χk|

)︄
: ∇(Ψkη − η) d|∇χk| dt

⃓⃓⃓⃓
⃓

≤ C

ˆ T

0
∥∇(Ψkη − η)∥C(Ω;Rd×d) dt

≤ C

ˆ T

0
∥∇PΩ(ψk ∗ η − η)∥C(Ω;Rd×d) dt

≤ C

ˆ T

0
∥ψk ∗ η − η∥W 2,p(Ω;Rd) dt.

The right hand side obviously goes to zero by letting k → ∞. In summary, we obtain as
desired ˆ T

0

ˆ
Ω

(︄
Id − ∇χk

|∇χk|
⊗ ∇χk

|∇χk|

)︄
: ∇(Ψkη) d|∇χk| dt

→
ˆ T

0

ˆ
Ω×Sd−1

(Id −s⊗ s) : ∇η dVt(x, s) for k → ∞,

for almost every T ∈ [0, Tw) and all η ∈ C∞([0, Tw);C1(Ω;Rd) ∩ ⋂︁
p≥2 W

2,p(Ω;Rd)) such
that div η = 0 and (η · n∂Ω)|∂Ω = 0.
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At last, we comment how to recover the energy inequality (2.41). This can be obtained
from combining the energy equality (2.234) with the lower-semicontinuity property (2.243)
and the convergence properties of vk to its limit v (i.e., up to a subsequence, vk ⇀ v in
L2(0, Tw;H1(Ω)) and vk ⇀∗ v in L∞(0, Tw;L2(Ω)) due to the uniform bound (2.236)).
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CHAPTER 3
Quantitative convergence of the

vectorial Allen-Cahn equation towards
multiphase mean curvature flow

This chapter contains an edited and revised version of the paper “Quantitative convergence of
the vectorial Allen-Cahn equation towards multiphase mean curvature flow”[49], which is a
joint work with Julian Fischer and accepted for publication at Ann. Inst. H. Poincaré Anal. Non
Linéaire. The preprint can be found on the arXiv (identifier 2203.17143).

Abstract. Phase-field models such as the Allen-Cahn equation may give rise to the formation
and evolution of geometric shapes, a phenomenon that may be analyzed rigorously in suitable
scaling regimes. In its sharp-interface limit, the vectorial Allen-Cahn equation with a potential
with N ≥ 3 distinct minima has been conjectured to describe the evolution of branched
interfaces by multiphase mean curvature flow.

In the present work, we give a rigorous proof for this statement in two and three ambient
dimensions and for a suitable class of potentials: As long as a strong solution to multiphase
mean curvature flow exists, solutions to the vectorial Allen-Cahn equation with well-prepared
initial data converge towards multiphase mean curvature flow in the limit of vanishing interface
width parameter ε ↘ 0. We even establish the rate of convergence O(ε1/2).

Our approach is based on the gradient flow structure of the Allen-Cahn equation and its limiting
motion: Building on the recent concept of “gradient flow calibrations” for multiphase mean
curvature flow, we introduce a notion of relative entropy for the vectorial Allen-Cahn equation
with multi-well potential. This enables us to overcome the limitations of other approaches, e. g.
avoiding the need for a stability analysis of the Allen-Cahn operator or additional convergence
hypotheses for the energy at positive times.

3.1 Introduction
In the present work, we study the behavior of solutions to the vector-valued Allen-Cahn
equation

∂tuε = ∆uε − 1
ε2∂uW (uε) (3.1)
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(a) (b) →

Figure 3.1: (a) A triple-well potential that attains its minimum at the three points α1, α2,
α3. (b) A partition of R2 evolving by multiphase mean curvature flow, corresponding to the
sharp-interface limit ε → 0 of the vectorial Allen-Cahn equation (3.1) with N -well potential
W .

(with W being an N -well potential, see e. g. Figure 3.1a, and uε : Rd × [0, T ] → RN−1) in
the limit of vanishing interface width ε → 0. We prove that for a suitable class of N -well
potentials W , in the limit ε → 0 the solutions uε describe a branched interface evolving by
multiphase mean curvature flow (see Figure 3.1b), provided that a classical solution to the
latter exists and provided that one starts with a sequence of well-prepared initial data uε(·, 0).
For quantitatively well-prepared initial data uε(·, 0), we even establish a rate of convergence
O(ε1/2) towards the multiphase mean curvature flow limit.

The Allen-Cahn equation (3.1) with N -well potential is an important example of a phase-field
model, an evolution equation for an order parameter uε that may vary in space and time.
Phase-field models may give rise to the formation and evolution of geometric shapes, a
phenomenon that becomes amenable to a rigorous mathematical analysis in suitable scaling
regimes. For several important structural classes of potentials W , such a rigorous analysis
has long been available for the Allen-Cahn equation: For instance, for the scalar Allen-Cahn
equation with two-well potential W – that is, for (3.1) with N = 2 – the convergence towards
(two-phase) mean curvature flow in the limit ε → 0 has been established by De Mottoni and
Schatzman [36], Bronsard and Kohn [23], Chen [28], Ilmanen [62], and Evans, Soner, and
Souganidis [40] in the context of three different notions of solutions to mean curvature flow
(namely, strong solutions, Brakke solutions, respectively viscosity solutions). In such two-phase
situations, sharp-interface limits have also been established for more complex phase-field models
[29, 12, 2, 42, 3], typically based on an approach that relies on matched asymptotic expansions
and a stability analysis of the PDE linearized around a transition profile. Beyond the case
of two-well potentials, results have been much more scarce. One of the few well-understood
settings is the case of the Ginzburg-Landau equation, which corresponds to the Allen-Cahn
equation (3.1) with a Sombrero-type potential W (u) = (1 − |u|2)2 and N = 3, i. e. with
a potential that features a continuum of minima at {u ∈ R2 : |u| = 1}. In this case, the
convergence of solutions to (codimension two) vortex filaments evolving by mean curvature
has been shown in dimensions d ≥ 3 by Jerrard and Soner [67], Lin [79], and Bethuel, Orlandi,
and Smets [18].

In contrast, for the (vectorial) Allen-Cahn equation (3.1) with a potential W with N ≥ 3
distinct minima, the only previous results on the sharp-interface limit have been a formal
expansion analysis by Bronsard and Reitich [24] and a convergence result that is conditional

90



3.1. Introduction

on the convergence of the Allen-Cahn energy

E[uε] :=
ˆ
Rd

ε

2 |∇uε|2 + W (uε)
ε

dx

at positive times (more precisely, in L1([0, T ])) by Laux and Simon [74]. In particular, to
the best of our knowledge not even an unconditional proof of qualitative convergence for
well-prepared initial data has been available so far. One of the main challenges that has
prevented a full analysis is the emergence of “branching” interfaces in the (conjectured) limit
of multiphase mean curvature flow (see Figure 3.1b), corresponding to a geometric singularity
in the limiting motion.
In the present work, we introduce a relative energy approach for the problem of the sharp-
interface limit of the vectorial Allen-Cahn equation in a multiphase setting: Building on the
concept of “gradient flow calibrations” that has been introduced by Hensel, Laux, Simon,
and the first author [46] precisely for the purpose of handling these branching singularities in
multiphase mean curvature flow and combining it with ideas from [48], we introduce a notion
of relative energy for the Allen-Cahn equation

E[uε|ξ] :=
ˆ
Rd

ε

2 |∇uε|2 + W (uε)
ε

+
N∑︂
i=1

ξi · ∇ψi(uε) dx.

Here, the ξi denote a “gradient flow calibration” for the strong solution to multiphase mean
curvature flow; in particular, ξi,j(x, t) := ξi − ξj is an extension of the unit normal vector field
of the interface between phases i and j in the strong solution to mean curvature flow at time
t. The ψi : RN−1 → [0, 1] are suitable C1,1 functions that serve as phase indicator functions;
in particular, denoting the N minima of the N -well potential W by αj (1 ≤ j ≤ N), the
functions ψi satisfy ψi(αj) = δij. Note that the functions ψj − ψi will play a role that is
somewhat similar to the role of the functions ψ(u) =

´ u
0

√︂
2W (s) ds in the Modica-Mortola

trick for a two-well potential W : R → R+
0 like W (u) = 9

8(1 − u2)2.
The properties of the gradient flow calibration ξi and the assumptions on the functions
ψi : RN−1 → [0, 1] will ensure that the estimate

⃓⃓⃓ ∑︁N
i=1 ξi · ∇ψi(uε)

⃓⃓⃓
≤ ε

2 |∇uε|2 + 1
ε
W (uε)

holds, thereby guaranteeing coercivity of the relative energy E[uε|ξ]. In our main result, we
prove that for suitable initial data uε(·, 0) we have ||ψi(uε(·, t)) − χ̄i(·, t)||L1(Rd) ≤ Cε1/2 for
all t ≤ T , where the χ̄i denote the phase indicator functions from the strong solution to
multiphase mean curvature flow.
Rigorous results on sharp-interface limits for phase-field models – such as our result – are also
of particular interest from a numerical perspective: In evolution equations for interfaces like
e. g. mean curvature flow, the occurrence of topological changes typically poses a challenge for
numerical simulations. One approach to the simulation of evolving interfaces is to construct a
mesh that discretizes the initial interface and to numerically evolve the resulting mesh over
time; however, it is then a highly nontrivial (and still widely open) question how to continue
the numerical mesh beyond a topology change in a numerically consistent way. An alternative
approach to the simulation of evolving interfaces that avoids this issue are phase-field models,
in which the geometric evolution equation for the interface is replaced by an evolution equation
for an order parameter posed on the entire space, allowing also for “mixtures” of the phases
at the transition regions. The natural diffuse-interface approximation for multiphase mean
curvature flow is given by the vector-valued Allen-Cahn equation with N -well potential (3.1).
The advantage of phase-field approximations for geometric motions such as (3.1) is that one
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3. Sharp interface limit of the vectorial Allen-Cahn equation

may solve them numerically using standard discretization schemes for parabolic PDEs; however,
to establish convergence of the overall scheme towards the original interface evolution problem,
it is necessary to rigorously justify the sharp-interface limit for the diffuse-interface model.

3.1.1 Notation
Throughout the paper, we use standard notation for parabolic PDEs. By Ḣ1(Rd) we denote the
space of functions have a weak derivative ∇u ∈ L2(Rd) and (in case d ≥ 3) decay at infinity.
In particular, for a function u ∈ L2([0, T ]; Ḣ1(Rd)) we denote by ∇u its (weak) spatial gradient
and by ∂tu its (weak) time derivative. For functions defined on phase space, like our potential
W : RN−1 → [0,∞) or the approximate phase indicator functions ψi : RN−1 → [0,∞), we
denote their gradient by ∂uW respectively ∂uψi. For a smooth interface Ii,j, we denote its
mean curvature vector by Hi,j.

3.2 Main results
Our main result identifies the sharp-interface limit ε → 0 for the vectorial Allen-Cahn equation
(3.1) for a sufficiently broad class of N -well potentials W characterized by the following
conditions.

(A1) Let W : RN−1 → [0,∞) be an N -well potential of class C1,1
loc (RN−1) that attains its

minimum W (u) = 0 precisely in N distinct points α1, . . . , αN ∈ RN−1. Assume that
there exists an integer q ≥ 2 and constants C, c > 0 such that in a neighborhood of
each αi we have

c|u− αi|q ≤ W (u) ≤ C|u− αi|q.

(A2) Let U ⊂ RN−1 be a bounded convex open set with piecewise C1 boundary and
{α1, . . . , αN} ⊂ U . Suppose that ∂uW (u) points towards U for any u ∈ ∂U .

(A3) Suppose that for any two distinct i, j ∈ {1, . . . , N}, there exists a unique minimizing path
γi,j connecting αi to αj in the sense

´
γi,j

√︂
2W (γi,j) dγi,j = infγ

´
γ

√︂
2W (γ) dγ = 1,

where the infimum is taken over all continuously differentiable paths γ connecting αi to
αj.

(A4) Suppose that there exist continuously differentiable functions ψi : U → [0, 1], 1 ≤ i ≤ N ,
and a disjoint partition of U into sets Ti,j , i < j ∈ {1, . . . , N}, subject to the following
properties:

– For any i ∈ {1, . . . , N}, we have ψi(αi) = 1 and ψi(u) < 1 for u ̸= αi.
– Suppose that on Ti,j, all ψk with k /∈ {i, j} vanish.
– Set ψ0 := 1 −∑︁N

i=1 ψi to achieve ∑︁N
i=0 ψi ≡ 1 and define ψi,j := ψj −ψi. Suppose

that there exists δ > 0 such that for any distinct i, j ∈ {1, . . . , N} and any u ∈ Ti,j
we have ⃓⃓⃓

1
2∂uψi,j(u)

⃓⃓⃓2
+
(︂

5
4 + δ

)︂ ⃓⃓⃓
1
2∂uψ0(u)

⃓⃓⃓2
+ δ |∂uψi,j(u) · ∂uψ0(u)|

≤ 2W (u).

Additionally, suppose there exists a constant C > 0 such that for any distinct
i, j ∈ {1, . . . , N} and any u ∈ Ti,j it holds that |∂uψi(u)| ≤ C

√︂
2W (u).
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The assumption that our potential W has a finite set of minima as stated in (A1) is fundamental
for the scaling limit we consider, as a different structure of the potential would give rise to
a different limiting motion – recall that for instance a Sombrero-type potential would lead
to (codimension two) vortex filaments structures [18, 67]. The assumption (A2) is rather
mild, ensuring the existence of bounded weak solutions to the vectorial Allen-Cahn equation
by a maximum principle (see Remark 32). The condition (A3) ensures that for each pair of
minima, there is a unique optimal profile connecting the two phases; furthermore, it fixes the
surface energy density for an interface between any pair of phases i and j to be 1. We expect
that it would be possible to generalize our results to more general classes of surface tensions
as considered in [46]; to avoid even more complex notation, we refrain from doing so in the
present manuscript.
The assumption (A4) is the only truly restrictive condition in our assumptions; in fact, it does
not include potentials which at the same time feature quadratic growth at the minima αi (i. e.,
with q = 2 in (A1)) and regularity of class C2. Nevertheless, as we shall see in Proposition 36
below, there exists a broad class of N -well potentials – including in particular potentials of
class C1,1 with quadratic growth at the minima αi – that satisfy all of our assumptions.
Our main result on the quantitative convergence of the vectorial Allen-Cahn equation towards
multiphase mean curvature flow reads as follows.

Theorem 29. Let d ∈ {2, 3}. In case d = 2, let (χ̄1, . . . , χ̄N) be a classical solution to
multiphase mean curvature flow on Rd on a time interval [0, T ] in the sense of Definition 33
below; in case d = 3, let (χ̄1, . . . , χ̄N) be a classical solution to multiphase mean curvature
flow of double bubble type in the sense of [57, Definition 10]. Let ξ be a corresponding
gradient flow calibration in the sense of Definition 34 below. Suppose that W is a potential
satisfying the assumptions (A1)–(A4). For every ε > 0, let uε ∈ L∞([0, T ]; Ḣ1(Rd;U)) be a
bounded weak solution to the vectorial Allen-Cahn equation (3.1).
Assume furthermore that the initial data uε(·, 0) are well-prepared in the sense that

E[uε|ξ](0) ≤ Cε,

max
i∈{1,...,N}

ˆ
Rd

⃓⃓⃓
ψi(uε(·, 0)) − χ̄i(·, 0)

⃓⃓⃓
min{dist(x, ∂ supp χ̄i(·, 0)), 1} dx ≤ Cε,

where E[uε|ξ] denotes the relative entropy given as

E[uε|ξ] :=
ˆ
Rd

ε

2 |∇uε|2 + 1
ε
W (uε) +

N∑︂
i=1

ξi · ∇(ψi ◦ uε) dx. (3.2)

Then the solutions uε to the vectorial Allen-Cahn equation converge towards multiphase mean
curvature flow with the rate O(ε1/2) in the sense that

sup
t∈[0,T ]

E[uε|ξ] ≤ Cε,

sup
t∈[0,T ]

max
i∈{1,...,N}

||ψi(uε(·, t)) − χ̄i(·, t)||L1(Rd) ≤ Cε1/2.

First, let us remark that in the planar case strong solutions to multiphase mean curvature flow
are known to exist prior to the first topology change for quite general initial data [24, 85].
Beyond topology changes, in general the evolution by multiphase mean curvature flow may
become unstable and uniqueness of solutions may fail, see e. g. the discussion in [85] or [46].
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3. Sharp interface limit of the vectorial Allen-Cahn equation

Thus, quantitative approximation results for multiphase mean curvature flow of the form of
our Theorem 29 should not be expected to hold beyond the first topology change. In this
sense, our result is optimal.

Second, let us emphasize that by [46] and [57] the existence of a gradient flow calibration is
ensured in the following situations:

• In the planar case d = 2, gradient flow calibrations exist as long as a strong solution
exists.

• In the three-dimensional case d = 3, gradient flow calibrations exist as long as a strong
solution of double bubble type (i. e. in particular with at most 3 phases meeting at each
point) exists.

Note that more generally we expect gradient flow calibrations to exist as long as a classical
solution to multiphase mean curvature flow exists. Since the construction becomes increasingly
technical when the geometrical features become more complex, the construction has not yet
been carried out in these more general situations. Nevertheless, as soon as gradient flow
calibration becomes available, our results below apply and yield the convergence of the vectorial
Allen-Cahn equation to multiphase mean curvature flow in the corresponding setting.

Next, let us remark that we may weaken the assumptions on the sequence of initial data if we
are content with lower rates of convergence or merely qualitative convergence statements.

Remark 30. As an inspection of the proof of Theorem 29 readily reveals, the assump-
tion of quantitative well-preparedness of the initial data in our theorem can be relaxed,
even to a qualitative one. For instance, by merely assuming the qualitative convergences
limε→0 E[uε|ξ](0) = 0 and limε→0 maxi∈{1,...,N} ||ψi(uε(·, 0)) − χ̄i(·, 0)||L1(Rd) = 0 at initial
time, from Theorem 40 and Proposition 41 we are able to obtain the qualitative convergence
statement

lim
ε→0

sup
t∈[0,T ]

E[uε|ξ] = 0 = lim
ε→0

sup
t∈[0,T ]

max
i∈{1,...,N}

||ψi(uε(·, t)) − χ̄i(·, t)||L1(Rd).

Observe furthermore that by the definition of the relative entropy, the convergence limε→0 E[uε|ξ](0) =
0 is in fact implied by the convergence of the initial energies E[uε](0) → E[χ̄](0) =
1
2
∑︁
i |∇χ̄i(·, 0)|(Rd) and the convergence of the initial data uε(·, 0) → ∑︁N

i=1 αiχ̄i(·, 0) in
L1(Rd).

To summarize, under the assumptions of Theorem 29 but given now a sequence of solutions
(uε)ε to the Allen-Cahn equation (3.1) satisfying only the qualitative converge properties at
initial time

uε(·, 0) −→
ε→0

N∑︂
i=1

αiχ̄i(·, 0) in L1(Rd),

E[uε](0) −→
ε→0

E[χ̄](0),

the solutions uε converge to multiphase mean curvature flow in the sense that

uε(·, t) −→
ε→0

N∑︂
i=1

αiχ̄i(·, t) in L1(Rd) for all t ∈ [0, T ].
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As the next proposition (and its rather straightforward proof, proceeding by glueing together
one-dimensional Modica-Mortola profiles) shows, well-prepared initial data satisfying the upper
bound O(ε) for the relative energy actually exist.

Proposition 31. Let assumptions (A1)–(A4) be in place. Let d = 2 and let (χ̄1(·, 0), . . . , χ̄N (·, 0))
be any initial data whose interfaces consist of finitely many C1 curves that meet at finitely
many triple junctions at angles of 120◦. Alternatively, let d = 3 and let (χ̄1(·, 0), . . . , χ̄N (·, 0))
be any initial data whose interfaces consist of finitely many C1 interfaces that meet at finitely
many triple lines of class C1 at angles of 120◦.
Then for any ε > 0 there exists initial data uε(·, 0) that is well-prepared in the sense that

Eε[uε|ξ](0) ≤ Cε,

max
i∈{1,...,N}

ˆ
Rd

|ψi(uε(·, 0)) − χ̄i(·, 0)| dist(x, ∂ supp χ̄i(·, 0)) dx ≤ Cε,

where the constant C depends on the initial data (χ̄1(·, 0), . . . , χ̄N (·, 0)) and on the potential
W .

Nevertheless, note that in the presence of triple junctions this rate of convergence O(ε) for
the relative entropy cannot be improved without modifying either the definition of the relative
entropy (3.7) or our assumptions (A1)–(A4), as it may be impossible to construct initial
data uε(·, 0) with Eε[uε|ξ] ≪ ε. Let us illustrate the reason for this limitation in the case
d = 2: Suppose that the initial data χ̄(·, 0) for the strong solution contain at least one triple
junction. By virtue of the term

´
ε
2 |∇uε|2 dx in the energy and the pointwise nonnegativity of

the integrand in the relative entropy, if we were to have E[uε|ξ](0) ≪ ε, the approximating
initial data uε(·, 0) would have to contain a true mixture of three phases in an ε-ball Bε(y)
somewhere. At the same time, our assumptions (A1)–(A4) allow the potential W to be
arbitrarily large for a true mixture of three phases (i. e., away from the boundary of the triangle
in Figure 3.1a for a three-well potential as in Definition 45), independently of the functions
ψi. If W is large enough, on Bε(y) the energy density ε

2 |∇uε|2 + 1
ε
W (uε) then cannot be

compensated by the term involving ∇ψi(uε) in the relative entropy, resulting in a lower bound
for the relative entropy of the order of

´
Bε(y)

1
2εW (uε) dx ≥ cε−1 × ε2 = cε. This limits the

overall convergence rate for our method to O(ε1/2) when measured e. g. in the L1 norm. We
expect this to be a limitation of our method, caused by an insufficient control of the precise
dynamics of the diffuse-interface model at triple junctions by the relative entropy E[uε|ξ]; for
suitably prepared initial data, we would anticipate a convergence rate O(ε). Whether such an
improved convergence rate can be deduced by a more refined relative entropy approach is an
open question.
Observe that the assumptions (A1) and (A2) are indeed sufficient to deduce global existence
of bounded solutions to the Allen-Cahn equation (3.1), starting from any measurable initial
data taking values in U .

Remark 32. Let W be any potential of class C1,1
loc satisfying our assumption (A2). Given

any measurable initial data uε(·, 0) taking values in U , for any T > 0 there exists a unique
bounded weak solution uε to the Allen-Cahn equation (3.1) on the time interval [0, T ]. To
see this, one may first show existence of a weak solution for a slightly modified PDE obtained
by replacing ∂uW outside of U by a Lipschitz extension. For this modified PDE, existence of
a weak solution can be shown in a standard way. A comparison argument (using (A2) and in
particular the convexity of U) then ensures that the weak solution to this modified equation
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3. Sharp interface limit of the vectorial Allen-Cahn equation

may only take values in U , proving both that it is bounded and that it actually solves the
original equation. Uniqueness is shown via the standard argument of a Gronwall-type estimate
for the squared L2(Rd) norm of the difference between two solutions.

We next recall the definition of strong solutions to multiphase mean curvature flow in the case
of two dimensions. For intuitive but technical-to-state geometric notions, we will refer to the
precise definitions in [46].

Definition 33 (Strong solution for multiphase mean curvature flow). Let d = 2, let P ≥ 2 be
an integer, and let T > 0 be a finite time horizon. Let χ̄0 = (χ̄0

1, . . . , χ̄
0
P ) be an initial regular

partition of R2 with finite interface energy in the sense of [46, Definition 14].

A measurable map

χ̄ = (χ̄1, . . . , χ̄P ) : Rd × [0, T ] → {0, 1}P ,

is called a strong solution for multiphase mean curvature flow with initial data χ̄0 if it satisfies
the following conditions:

i) (Smoothly evolving regular partition with finite interface energy) Denote by Ii,j :=
supp χ̄i∩supp χ̄j for i ̸= j the interface between phases i and j. The map χ̄ is a smoothly
evolving regular partition of Rd×[0, T ] and I := ⋃︁

i,j∈{1,...,P},i ̸=j Ii,j is a smoothly evolving
regular network of interfaces in Rd×[0, T ] in the sense of [46, Definition 15]. In particular,
for every t ∈ [0, T ], χ̄(·, t) is a regular partition of Rd and ⋃︁i ̸=j Ii,j(t) is a regular network
of interfaces in Rd in the sense of [46, Definition 14] such that

sup
t∈[0,T ]

E[χ̄(·, t)] = sup
t∈[0,T ]

P∑︂
i,j=1,i<j

ˆ
Ii,j(t)

1 dS < ∞. (3.3a)

ii) (Evolution by mean curvature) For i, j = 1, . . . , P with i ̸= j and (x, t) ∈ Ii,j let V̄ i,j(x, t)
denote the normal speed of the interface at the point x ∈ Ii,j(t). Denoting by Hi,j(x, t)
and ni,j(x, t) the mean curvature vector and the normal vector of Ii,j(t) at x ∈ Ii,j(t),
the interfaces Ii,j evolve by mean curvature in the sense

V̄ i,j(x, t)ni,j(x, t) = Hi,j(x, t), for all t ∈ [0, T ], x ∈ Ii,j(t). (3.3b)

iii) (Initial conditions) We have χ̄i(x, 0) = χ̄0
i (x) for all points x ∈ Rd and each phase

i ∈ {1, . . . , P}.

Our main results centrally rely on the concept of gradient flow calibrations introduced in [46],
whose definition we next recall.

Definition 34. Let d ≥ 2. Let (χ̄1, . . . , χ̄N ) be a smoothly evolving partition of Rd on a time
interval [0, T ). Denote by Ii,j := supp χ̄i ∩ supp χ̄j, 1 ≤ i, j ≤ N , i ̸= j, the corresponding
interfaces. We say that a collection of C1,1 vector fields ξi : Rd × [0, T ) → Rd, 1 ≤ i ≤ N ,
and B : Rd × [0, T ) → Rd is a gradient flow calibration if the following conditions are satisfied:

∂tξi,j + (B · ∇)ξi,j + (∇B)Tξi,j = O(dist(·, Ii,j)), (3.4a)
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1
2ξi,j · (∂tξi,j + (B · ∇)ξi,j) = O(dist2(·, Ii,j)), (3.4b)

(B · ξi,j)ξi,j + (∇ · ξi,j)ξi,j,= O(dist(·, Ii,j)) (3.4c)

∇B : ξi,j ⊗ ξi,j = O(dist(·, Ii,j)), (3.4d)

∇B : (ξ⊥
i,j ⊗ ξi,j + ξi,j ⊗ ξ⊥

i,j) = O(dist(·, Ii,j)), (3.4e)

1 − Clen dist2(·, Ii,j) ≤ |ξi,j|2 ≤ 1 − clen min{dist2(·, Ii,j), 1}, (3.4f)

ξi,j = ni,j on Ii,j, (3.4g)

|
√

3ξi| ≤ 1 and
N∑︂
i=1

ξi = 0, (3.4h)

|ξi,j|2 + (4 − δcal)
N∑︂
k=1

k/∈{i,j}

|
√

3ξi,j · ξk|2 ≤ 1, (3.4i)

for some constants Clen > 0, clen ∈ (0, 1), an arbitrarily small δcal > 0 and any distinct
i, j ∈ {1, ..N}.

Moreover, we call a family of C1,1 functions ϑi a family of evolving distance weights if they
satisfy

ϑi(·, t) ≤ −cmin{dist(·, Ii,j(t)), 1} in {χ̄i(·, t) = 1}, (3.5a)
ϑi(·, t) ≥ cmin{dist(·, Ii,j(t)), 1} outside of {χ̄i(·, t) = 1}, (3.5b)

|ϑi(·, t)| ≤ C min{dist(·, Ii,j(t)), 1} globally, (3.5c)

and

|∂tϑi +B · ∇ϑi| ≤ C|ϑi|. (3.6)

Note that the existence of a calibration for a given smoothly evolving partition entails that the
partition must evolve by multiphase mean curvature flow (i. e., the partition must be a strong
solution to multiphase mean curvature flow). In fact, the conditions (3.4a), (3.4c), (3.4g),
and (3.4f) are sufficient to deduce the property (3.3b). Observe that the condition (3.4i) is
not stated in [46], however it follows from the construction of the gradient flow calibration
provided in [46] (for more details see Section 3.7).

For many geometries, (χ̄1, . . . , χ̄N ) being a strong solution to multiphase mean curvature flow
is also sufficient to construct a gradient flow calibration.
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Theorem 35 (Existence of gradient flow calibrations, [46, Theorem 6] and [57, Theorem 1]).
Let d ∈ {2, 3} and let χ̄0 be a regular partition of Rd with finite surface energy; for d = 3,
assume furthermore that the partition corresponds to a double bubble type geometry. Let
χ̄ be a strong solution to multiphase mean curvature flow on the time interval [0, T ] in the
sense of Definition 33 (for d = 2) respectively in the sense of [57, Definition 10] (for d = 3).
Then for any δcal > 0 and any clen ≥ 1 there exists a gradient flow calibration in the sense
of Definition 34 up to time T . Furthermore, there also exists a family of evolving distance
weights.

Finally, we conclude this section by showing that the class of potentials W satisfying the
assumptions (A1)–(A4) is indeed sufficiently broad. In fact, given

• a prescribed set of N minima αi ∈ RN−1, 1 ≤ i ≤ N ,

• a prescribed set of non-intersecting minimal paths γi,j, 1 ≤ i < j ≤ N , that meet at
the αi at positive angles, and

• a potential W̃ : ∪i,j:i<jγi,j → [0,∞) defined on the minimal paths γi,j and subject to
(A1) and (A3), i. e. in particular with

´
γi,j

√︂
2W̃ (u) dγ(u) = 1,

it is always possible to extend the potential W̃ to a potential W : RN−1 → [0,∞) that satisfies
condition (A4). More precisely, to satisfy (A4) it is sufficient to require W (u) ≥ (1 +M |u−
αi|−4 dist(u, γ)4)W (Pγu) in some neighborhood Ui of αi (with Pγ denoting the projection
onto the nearest point among all paths γ := ∪j,kγj,k) as well as W (u) ≥ M dist(u,∪i<jγi,j)2

in RN−1 \ ∪iUi. Here, M is a constant depending only on W̃ , the paths γi,j, and the
neighborhoods Ui.

For the sake of simplicity, we limit ourselves in our rigorous statement to the study of potentials
defined on a simplex △N−1; however, it is not too difficult to see that our construction would
generalize to the aforementioned situation.

Proposition 36. Let N ≥ 3. Let △N−1 be an (N − 1)-simplex with edges of unit length
in RN−1. Let W : △N−1 → [0,∞) be a strongly coercive symmetric N -well potential
on the simplex △N−1 in the sense of Definition 45 below. Then, the assumptions (A1)–
(A4) (see Section 3.2) are satisfied. In particular, (A4) holds true for the set of functions
ψi : △N−1 → [0, 1], 1 ≤ i ≤ N , provided by Construction 47 below.

3.3 Strategy of the proof
The key idea for our proof is the notion of relative entropy (or, more accurately, relative energy)
given by

E[uε|ξ] := E[uε] +
N∑︂
i=1

ˆ
Rd

ξi · ∇(ψi ◦ uε) dx

=
ˆ
Rd

ε

2 |∇uε|2 + 1
ε
W (uε) +

N∑︂
i=1

ξi · ∇(ψi ◦ uε) dx. (3.7)

The form of the ansatz for the relative entropy is inspired by two earlier approaches:
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• The concept of gradient flow calibrations introduced in [46] by the first author, Hensel,
Laux, and Simon to derive weak-strong uniqueness and stability results for distributional
solutions to multiphase mean curvature flow. Gradient flow calibrations provide a lower
bound of the form −∑︁

i

´
ξi · d∇χi on the interface energy functional 1

2
∑︁
i

´
1 d|∇χi|,

thereby facilitating a relative entropy approach to weak-strong uniqueness principles
for multiphase mean curvature flow. We emphasize that gradient flow calibrations
are specifically designed to handle the (singular) geometries at triple junctions in the
strong solution. We refer to [66, 45] for earlier uses of relative entropy techniques for
weak-strong uniqueness for geometric evolution problems with smooth geometries (in
the strong solution) (see also [58] for a further development of the relative entropy
argument in order to incorporate the constant ninety degree contact angle condition).

• The relative entropy approach to the sharp-interface limit of the scalar Allen-Cahn
equation by the first author, Laux, and Simon [48], relying on the Modica-Mortola trick
to obtain a lower bound of the form

´
ξ · ∇ψ(uε) dx for the Ginzburg-Landau energy

E[uε] =
´
Rd

ε
2 |∇uε|2 + 1

ε
W (uε) dx (see also [59] for an adaptation of this approach

in order to encode the constant contact angle condition and [72] for a subsequent
application of the relative energy method to a problem in the context of liquid crystals).

The two key steps towards establishing our main results are as follows:

• Establishing a number of coercivity properties of the relative entropy E[uε|ξ], including
for example

E[uε|ξ] ≥ c

ˆ
min{dist2(·,∪i ̸=jIi,j), 1}( ε2 |∇uε|2 + 1

ε
W (uε)) dx. (3.8)

• Deriving a Gronwall-type estimate for the time evolution of the relative energy of the
type

∂tE[uε|ξ] ≤ CE[uε|ξ].

We shall illustrate this strategy by stating the main intermediate results in the present section
below.

As it central for our strategy, let us first give the main argument for the coercivity of the relative
entropy (3.7) (despite it being slightly technical). It makes use of the following elementary
lemma.

Lemma 37. Let ξi, 1 ≤ i ≤ N , be vector fields of class C1 satisfying ∑︁N
i=1 ξi = 0; suppose that

at any point (x, t) ∈ Rd × [0, T ] at most three of the ξi do not vanish. Let ψi : RN−1 → [0, 1],
1 ≤ i ≤ N , be functions as in assumption (A4). In particular, set ψ0 := 1 − ∑︁N

i=1 ψi. Let
uε ∈ L∞([0, T ]; Ḣ1(Rd)). Defining ψi,j := ψj −ψi and ξi,j := ξi− ξj , we have for any distinct
i, j, k ∈ {1, . . . , N}

N∑︂
ℓ=1

ξℓ ⊗ ∇(ψℓ ◦ uε) = −1
2ξi,j ⊗ ∇(ψi,j ◦ uε) +

N∑︂
k=1

k/∈{i,j}

1
2ξk ⊗ ∇(ψ0 ◦ uε) (3.9)
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almost everywhere in {uε ∈ Ti,j} as well as

N∑︂
ℓ=1

∇ξℓ ⊗ ∇(ψℓ ◦ uε) = −1
2∇ξi,j ⊗ ∇(ψi,j ◦ uε) +

N∑︂
k=1

k/∈{i,j}

1
2∇ξk ⊗ ∇(ψ0 ◦ uε), (3.10)

N∑︂
ℓ=1

∇ξℓ ⊗ ∂uψℓ(uε) = −1
2∇ξi,j ⊗ ∂uψi,j(uε) +

N∑︂
k=1

k/∈{i,j}

1
2∇ξk ⊗ ∂uψ0(uε) (3.11)

almost everywhere in {uε ∈ Ti,j}.

Proof. By adding zeros, using the definitions ξi,j := ξi − ξj and ψi,j := ψj − ψi, we obtain

N∑︂
ℓ=1

ξℓ · ∇(ψℓ ◦ uε) = − 1
2ξi,j · ∇(ψi,j ◦ uε) + 1

2ξi · ∇((ψi + ψj) ◦ uε)

+ 1
2ξj · ∇((ψi + ψj) ◦ uε) +

N∑︂
k=1

k/∈{i,j}

ξk · ∇(ψk ◦ uε),

almost everywhere in Rd × (0, T ). The equation (3.9) now follows by exploiting that ∂uψk = 0
on Ti,j for k /∈ {i, j}, inserting the definition of ψ0, and using ∑︁N

ℓ=1 ξℓ = 0. The proof of the
other properties is analogous.

With the previous lemma and our assumptions (A1)–(A4), it becomes rather straightforward
to establish coercivity of our relative energy: Observe that we may compute for (x, t) with
uε(x, t) ∈ Ti,j

ε

2 |∇uε|2 + 1
ε
W (uε) +

N∑︂
ℓ=1

ξℓ · ∇(ψℓ ◦ uε)

= ε

2 |∇uε|2 + 1
ε
W (uε) −

(︄
1
2∂uψi,j(uε) ⊗ ξi,j −

N∑︂
k=1

k/∈{i,j}

1
2
√

3∂uψ0(uε) ⊗
√

3ξk
)︄

: ∇uε

= 1
2

⃓⃓⃓⃓
⃓√ε∇uε − 1√

ε

(︄
1
2∂uψi,j(uε) ⊗ ξi,j −

N∑︂
k=1

k/∈{i,j}

1
2
√

3∂uψ0(uε) ⊗
√

3ξk
)︄⃓⃓⃓⃓
⃓
2

+ 1
2ε

⎡⎣2W (uε) −
⃓⃓⃓⃓
⃓12∂uψi,j(uε) ⊗ ξi,j −

N∑︂
k=1

k/∈{i,j}

1
2
√

3∂uψ0(uε) ⊗
√

3ξk
⃓⃓⃓⃓
⃓
2
⎤⎦ (3.12)

due to the fact that ψk ≡ 0 on Ti,j for any k ∈ {1, ..., N} \ {i, j}. This will be the starting
point to prove the coercivity properties satisfied by the relative energy functional (3.7); note
in particular that ⃓⃓⃓⃓

⃓12∂uψi,j(uε) ⊗ ξi,j −
N∑︂
k=1

k/∈{i,j}

1
2
√

3∂uψ0(uε) ⊗
√

3ξk
⃓⃓⃓⃓
⃓
2

= |ξi,j|2
⃓⃓⃓

1
2∂uψi,j(uε)

⃓⃓⃓2
+

N∑︂
k=1

k/∈{i,j}

|
√

3ξk|2
⃓⃓⃓

1
2
√

3∂uψ0(uε)
⃓⃓⃓2
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−
N∑︂
k=1

k/∈{i,j}

1
2(ξi,j · ξk)∂uψi,j(uε) · ∂uψ0(uε).

Using our assumption (A4) and the properties of the gradient flow calibration |ξi| ≤ 1√
3 ,

|ξi,j| ≤ 1 and (3.4i), this establishes a first coercivity bound like (3.8). Going substantially
beyond this simple estimate, we shall see that in fact we have the following coercivity properties.

Proposition 38. Let W and ψi be functions subject to assumption (A4). Let ξi, 1 ≤ i ≤ N ,
be any collection of C1 vector fields satisfying ∑︁N

i=1 ξi = 0, |
√

3ξi| ≤ 1 for all i, as well as
with the notation ξi,j := ξi − ξj

|ξi,j|2 + (4 − δcal)
N∑︂
k=1

k/∈{i,j}

|
√

3ξi,j · ξk|2 ≤ 1 (3.13)

for some arbitrarily small δcal > 0. Furthermore, suppose that at each point at most three
of the vector fields ξi do not vanish. For any function uε ∈ Ḣ

1(Rd;U) with E[uε] < ∞, we
then have the estimates

ˆ
Rd

(︄
√
ε|∇uε| − 1√

ε

√︂
2W (uε)

)︄2

dx ≤ CE[uε|ξ] , (3.14a)

N∑︂
i,j=1
i<j

ˆ
Rd

⃓⃓⃓⃓
⃓ ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

− ξi,j

⃓⃓⃓⃓
⃓
2

|∇(ψi,j ◦ uε)|χT b
i,j

(uε) dx ≤ CE[uε|ξ], (3.14b)

N∑︂
i,j=1
i<j

ˆ
Rd

min{dist2(x, Ii,j), 1}|∇(ψi,j ◦ uε)|χTi,j
(uε) dx ≤ CE[uε|ξ], (3.14c)

N∑︂
i,j=1
i<j

ˆ
Rd

min{dist2(x, Ii,j), 1}
(︃
ε

2 |∇uε|2 + 1
ε
W (uε)

)︃
χT b

i,j
(uε) dx ≤ CE[uε|ξ] , (3.14d)

N∑︂
i,j=1
i<j

ˆ
Rd

ε|(Id −ξi,j ⊗ ξi,j)∇uT
ε |2χT b

i,j
(uε) dx ≤ CE[uε|ξ]. (3.14e)

These coercivity estimates will be derived as a consequence of the computation (3.12) and
the following coercivity properties.

Proposition 39. Let W and ψi be functions subject to assumption (A4). Let ξi, 1 ≤ i ≤ N ,
be as in Proposition 38. For any function uε ∈ Ḣ

1(Rd;U) with E[uε] < ∞, we then have the
estimates

N∑︂
i,j=1
i<j

ˆ
Rd

1
ε

|∂uψ0(uε)|2 χT b
i,j

(uε) dx ≤ CE[uε|ξ], (3.15a)

N∑︂
i,j=1
i<j

ˆ
Rd

1
ε

|∂uψi,j(uε) · ∂uψ0(uε)|χT b
i,j

(uε) dx ≤ CE[uε|ξ] , (3.15b)

N∑︂
i,j=1
i<j

ˆ
Rd

|∇(ψ0 ◦ uε)|χT b
i,j

(uε) dx ≤ CE[uε|ξ] . (3.15c)

101



3. Sharp interface limit of the vectorial Allen-Cahn equation

To introduce a proxy at the level of the Allen-Cahn equation for the limiting mean curvature
(or, more precisely, a quantity Hε such that | Hε |2 is a proxy for the dissipation in mean
curvature flow), we introduce the abbreviation

Hε := −ε
(︃

∆uε − 1
ε2∂uW (uε)

)︃
· ∇uε

|∇uε|
. (3.16)

The key step in our proof is to establish the following estimate for the relative energy using a
Gronwall-type argument.

Theorem 40 (Relative energy inequality). Let χ̄ = (χ̄1, . . . , χ̄N) be a smoothly evolving
partition of Rd; let ((ξi)i, B) be an associated gradient flow calibration in the sense of
Definition 34. Let W be a potential subject to assumptions (A1)–(A4). Let uε be a bounded
solution to the vector-valued Allen-Cahn equation (3.1) with initial data uε(·, 0) ∈ Ḣ

1(Rd;U)
with finite energy E[uε(·, 0)] < ∞. Then for any t ∈ [0, T ] the estimate

d
dtE[uε|ξ] +

N∑︂
i,j=1
i<j

ˆ
Rd

1
2ε | Hε −ε(B · ξi,j)ξi,j|∇uε||2χTi,j

(uε) dx

+
ˆ
Rd

1
2ε

(︄⃓⃓⃓⃓
ε∆uε − 1

ε
∂uW (uε)

⃓⃓⃓⃓2
− | Hε |2

)︄
dx

+
ˆ
Rd

1
4ε

⃓⃓⃓⃓(︃
ε∆uε − 1

ε
∂uW (uε)

)︃
+

N∑︂
i=1

(∇ · ξi)∂uψi(uε)
⃓⃓⃓⃓2

dx

≤ C(d, χ̄)E[uε|ξ] (3.17)

holds true, with Hε as defined in (3.16) and E[uε|ξ] as defined in (3.2).

Building on the previous estimate and the coercivity properties of the relative entropy, we will
show the following error estimate at the level of the indicator functions.

Proposition 41. Let the assumptions of Theorem 40 be in place. In addition, let ϑi be a family
of evolving distance weights as defined in Definition 34. We then have for all i ∈ {1, . . . , N}

sup
t∈[0,T ]

ˆ
Rd

|ψi(uε) − χ̄i| min{dist(·, ∂ supp χ̄i(·, t)), 1} dx

≤ C(d, T, (χ̄(t))t∈[0,T ])E[uε|ξ](0)

+ C(d, T, (χ̄(t))t∈[0,T ])
ˆ
Rd

|ψi(uε(·, 0)) − χ̄i(·, 0)| min{dist(·, ∂ supp χ̄i(·, 0)), 1} dx.

The proof of Theorem 40 crucially relies on the coercivity properties of Proposition 39 and 38
and the following simplification of the evolution equation for the relative entropy.

Lemma 42. Let W be a potential of class C1,1
loc (RN−1) subject to assumptions (A1)–(A4).

Let uε be a solution to the vector-valued Allen-Cahn equation (3.1) with initial data uε(·, 0) ∈
Ḣ

1(Rd;U) with finite energy E[uε(·, 0)] < ∞. Let (ξi, B) be a gradient flow calibration in
the sense of Definition 34. The time evolution of the relative energy (3.7) is then given by

d
dtE[uε|ξ] (3.18)
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= −
N∑︂

i,j=1
i<j

ˆ
Rd

1
2ε
⃓⃓⃓
Hε −ε(B · ξi,j)ξi,j|∇uε|

⃓⃓⃓2
χT b

i,j
(uε) dx

−
ˆ
Rd

1
2ε

⃓⃓⃓⃓
⃓
(︃
ε∆uε − 1

ε
∂uW (uε)

)︃
+

N∑︂
i=1

(∇ · ξi)∂uψi(uε)
⃓⃓⃓⃓
⃓
2

dx

−
ˆ
Rd

1
2ε

(︄⃓⃓⃓⃓
ε∆uε − 1

ε
∂uW (uε)

⃓⃓⃓⃓2
− | Hε |2

)︄
dx

+ ErrAllenCahn + Errinstab + Errdtξ + ErrMCξ + ErrOtherPhases

where we have abbreviated

Errinstab :=ˆ
Rd

(∇ · B)
(︃
ε

2 |∇uε|2 + 1
ε
W (uε) +

N∑︂
i=1

ξi · ∇(ψi ◦ uε)
)︃

dx (3.19a)

−
N∑︂

i,j=1
i<j

ˆ
Rd

1
2∇B :

(︄
ξi,j − ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

)︄
⊗
(︄
ξi,j − ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

)︄

× |∇(ψi,j ◦ uε)|χT b
i,j

(uε) dx

and

ErrAllenCahn :=
N∑︂

i,j=1
i<j

ˆ
Rd

∇B :
(︄

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

⊗ ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

1
2 |∇(ψi,j ◦ uε)| (3.19b)

− ε∇uT
ε ∇uε

)︄
χT b

i,j
(uε) dx

and

Errdtξ :=
N∑︂

i,j=1
i<j

ˆ
Rd

1
2(∂tξi,j + (B · ∇)ξi,j + (∇B)Tξi,j) (3.19c)

·
(︄
ξi,j − ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

)︄
|∇(ψi,j ◦ uε)|χT b

i,j
(uε) dx

−
N∑︂

i,j=1
i<j

ˆ
Rd

1
2ξi,j · (∂tξi,j + (B · ∇)ξi,j)|∇(ψi,j ◦ uε)|χT b

i,j
(uε) dx

as well as

ErrMCξ :=
ˆ
Rd

1
2ε

⃓⃓⃓⃓
⃓
N∑︂
i=1

(∇ · ξi)∂uψi(uε)
⃓⃓⃓⃓
⃓
2

dx

−
N∑︂
i=1

ˆ
Rd

(∇ · ξi)B · ∇(ψi ◦ uε) dx (3.19d)

+
N∑︂

i,j=1
i<j

ˆ
Rd

ε

2 |B · ξi,j|2|ξi,j|2|∇uε|2χT b
i,j

(uε) dx
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+
N∑︂

i,j=1
i<j

ˆ
Rd

(Id −ξi,j ⊗ ξi,j) : Hε ⊗B|∇uε|χT b
i,j

(uε) dx

and

ErrOtherPhases :=
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2(∂tξk + (B · ∇)ξk + (∇B)Tξk) · ∇(ψ0 ◦ uε)χT b

i,j
(uε) dx

−
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2∇B : ∇(ψ0 ◦ uε) ⊗ ξkχT b

i,j
(uε) dx (3.19e)

−
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2∇B : ξk ⊗ ∇(ψ0 ◦ uε)χT b

i,j
(uε) dx.

3.4 The relative energy argument

3.4.1 Derivation of the Gronwall inequality for the relative entropy
We first show how the evolution estimate for the relative entropy from Lemma 42 and the
coercivity properties of our relative entropy together imply a Gronwall-type estimate for the
evolution of the relative entropy.

Proof of Theorem 40. We proceed by estimating the terms on the right-hand side of the
equation (3.18) for the time evolution of the relative energy. Note that it will be sufficient to
prove

ErrAllenCahn + Errinstab + Errdtξ + ErrMCξ + ErrOtherPhases
≤ C(ξ(t), B(t), δ̄)E[uε|ξ]

+ δ̄
N∑︂

i,j=1
i<j

ˆ
Rd

1
2ε
⃓⃓⃓
Hε −ε(B · ξi,j)ξi,j|∇uε|

⃓⃓⃓2
χT b

i,j
(uε) dx

+ δ̄

ˆ
Rd

1
2ε

⃓⃓⃓⃓
⃓
(︃
ε∆uε − 1

ε
∂uW (uε)

)︃
+

N∑︂
i=1

(∇ · ξi)∂uψi(uε)
⃓⃓⃓⃓
⃓
2

dx

for any δ̄ > 0, as then an absorption argument applied to (3.18) (for δ̄ < 1
4) yields

d
dtE[uε|ξ] ≤ C(ξ(t), B(t), δ̄)E[uε|ξ].

The Gronwall inequality then implies our conclusion.

Step 1: Estimates for ErrOtherPhases, Errdtξ, and Errinstab. We first show that

Errinstab + Errdtξ + ErrOtherPhases ≤ C(ξ(t), B(t))E[uε|ξ].
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Indeed, it is immediate by the definition (3.19e) and the coercivity property (3.15c) of our
relative energy that the inequality

ErrOtherPhases ≤
N∑︂

i,j=1
i<j

C(ξ(t), B(t))
ˆ
Rd

|∇ψ0|χT b
i,j

(uε) dx

≤ C(ξ(t), B(t))E[uε|ξ]

holds. Using the defining properties (3.4a) and (3.4b) of the calibration ξ and the coercivity
properties (3.14b) and (3.14c) of our relative energy, we likewise deduce from the definition
(3.19c) that Errdtξ ≤ C(ξ(t), B(t))E[uε|ξ], using for instance the estimate

N∑︂
i,j=1
i<j

ˆ
Rd

1
2(∂tξi,j + (B · ∇)ξi,j + (∇B)Tξi,j)

·
(︄
ξi,j − ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

)︄
|∇(ψi,j ◦ uε)|χT b

i,j
(uε) dx

≤
N∑︂

i,j=1
i<j

(︄ ˆ
Rd

⃓⃓⃓
∂tξi,j + (B · ∇)ξi,j + (∇B)Tξi,j

⃓⃓⃓2
|∇(ψi,j ◦ uε)|χT b

i,j
(uε) dx

)︄1/2

×
(︄ ˆ

Rd

⃓⃓⃓⃓
⃓ξi,j − ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

⃓⃓⃓⃓
⃓
2

|∇(ψi,j ◦ uε)|χT b
i,j

(uε) dx
)︄1/2

(3.4a),(3.14b),(3.14c)
≤ C(ξ(t), B(t))E[uε|ξ].

Similarly, recalling the definition (3.19a) and (3.14b) as well as (3.2), we immediately get
Errinstab ≤ C(ξ(t), B(t))E[uε|ξ]. It therefore only remains to estimate ErrAllenCahn and
ErrMCξ.
Step 2: Estimate for ErrAllenCahn. By adding zeroes, we may rewrite

ErrAllenCahn

=
N∑︂

i,j=1
i<j

ˆ
Rd

∇B :
(︄

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

⊗ ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

− ξi,j ⊗ ξi,j

)︄

×
(︃1

2 |∇(ψi,j ◦ uε)| − ε|∇uε|2
)︃
χT b

i,j
(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

∇B : ξi,j ⊗ ξi,j

(︃1
2 |∇(ψi,j ◦ uε)| − ε|∇uε|2

)︃
χT b

i,j
(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

∇B :
(︄

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

⊗ ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

− ∇uT
ε ∇uε

|∇uε|2

)︄
ε|∇uε|2χT b

i,j
(uε) dx.

The first term on the right-hand side can be bounded by C(ξ(t), B(t))E[uε|ξ] by writing

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

⊗ ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

− ξi,j ⊗ ξi,j

=
(︄

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

− ξi,j

)︄
⊗ ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|
+ ξi,j ⊗

(︄
∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

− ξi,j

)︄
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and using Young’s inequality together with the coercivity estimates (3.23) and (3.24) for our
relative energy. The second term on the right-hand side in the above formula can be estimated
similarly by exploiting Young’s inequality as well as the gradient flow calibration property
(3.4d) and the coercivity estimates (3.14d) and (3.24).

It remains to bound the third term on the right-hand side. To this aim, we note that for any
symmetric matrix A we have

∇B : A = ∇B : (Id −ξi,j ⊗ ξi,j)A(Id −ξi,j ⊗ ξi,j)
+ (Id −ξi,j ⊗ ξi,j)

(︂
∇B + (∇B)T

)︂
ξi,j · (ξi,j · A(Id −ξi,j ⊗ ξi,j))

+ ξi,j · (Id −ξi,j ⊗ ξi,j)
(︂
∇B + (∇B)T

)︂
ξi,j(ξi,j · Aξi,j)

+ ξi,j · ∇B ξi,j(ξi,j · Aξi,j).

This entails by (3.4e) and |ξi,j(Id −ξi,j⊗ξi,j)| ≤ C dist2(·, Ii,j) (the latter being a consequence
of (3.4f))

N∑︂
i,j=1
i<j

ˆ
Rd

∇B :
(︄

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

⊗ ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

− ∇uT
ε ∇uε

|∇uε|2

)︄
ε|∇uε|2χT b

i,j
(uε) dx

≤ C(ξ(t), B(t))
N∑︂

i,j=1
i<j

ˆ
Rd

(︄⃓⃓⃓⃓
⃓(Id −ξi,j ⊗ ξi,j)

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

⃓⃓⃓⃓
⃓
2

ε|∇uε|2

+ ε|(Id −ξi,j ⊗ ξi,j)∇uT
ε |2
)︄
χT b

i,j
(uε) dx

+ C(ξ(t), B(t))
N∑︂

i,j=1
i<j

ˆ
Rd

min{dist(x, Ii,j), 1}
(︄⃓⃓⃓⃓
⃓(Id −ξi,j ⊗ ξi,j)

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

⃓⃓⃓⃓
⃓ε|∇uε|2

+ ε|(Id −ξi,j ⊗ ξi,j)∇uT
ε ||∇uε|

)︄
χT b

i,j
(uε) dx

+ C(ξ(t), B(t))
N∑︂

i,j=1
i<j

ˆ
Rd

min{dist2(x, Ii,j), 1}ε|∇uε|2χT b
i,j

(uε) dx

+ C(ξ(t), B(t))
N∑︂

i,j=1
i<j

ˆ
Rd

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓ξi,j · ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

⃓⃓⃓⃓
⃓
2

ε|∇uε|2 − ε|(ξi,j · ∇)uε|2
⃓⃓⃓⃓
⃓⃓χT b

i,j
(uε) dx

≤ C(ξ(t), B(t))
N∑︂

i,j=1
i<j

ˆ
Rd

(︄⃓⃓⃓⃓
⃓(Id −ξi,j ⊗ ξi,j)

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

⃓⃓⃓⃓
⃓
2

ε|∇uε|2

+ ε|(Id −ξi,j ⊗ ξi,j)∇uT
ε |2
)︄
χT b

i,j
(uε) dx

+ C(ξ(t), B(t))
N∑︂

i,j=1
i<j

ˆ
Rd

⎛⎝(︄1 −
⃓⃓⃓⃓
⃓ξi,j · ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

⃓⃓⃓⃓
⃓
2)︄
ε|∇uε|2

+ ε
(︂
|∇uε|2 − |(ξi,j · ∇)uε|2

)︂⎞⎠χT b
i,j

(uε) dx

106



3.4. The relative energy argument

+ C(ξ(t), B(t))
N∑︂

i,j=1
i<j

ˆ
Rd

min{dist2(x, Ii,j), 1}ε|∇uε|2χT b
i,j

(uε) dx,

where in the last step we have used Young’s inequality. By the coercivity properties (3.14d),
(3.23), (3.26), and (3.14e), we conclude that

ErrAllenCahn ≤ C(ξ(t), B(t))E[uε|ξ].

Step 3: Estimate for ErrMCξ. For the estimate on ErrMCξ, we have to work a bit more. We
begin by adding zeroes and using (3.11) to obtain

ErrMCξ

≤
N∑︂

i,j=1
i<j

ˆ
Rd

1
2ε

⃓⃓⃓⃓
⃓− 1

2(∇ · ξi,j)∂uψi,j(uε) +
N∑︂
k=1

k/∈{i,j}

1
2(∇ · ξk)∂uψ0(uε)

⃓⃓⃓⃓
⃓
2

χT b
i,j

(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

1
2(∇ · ξi,j)B · ∇(ψi,j ◦ uε)χT b

i,j
(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

ε

2 |B · ξi,j|2|∇uε|2χT b
i,j

(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

(Id −ξi,j ⊗ ξi,j) : Hε ⊗B|∇uε|χT b
i,j

(uε) dx

−
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2(∇ · ξk)B · ∇(ψ0 ◦ uε)χT b

i,j
(uε) dx

=
N∑︂

i,j=1
i<j

ˆ
Rd

1
2

⃓⃓⃓⃓
⃓ 1√
ε
(∇ · ξi,j)

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

⊗ 1
2∂uψi,j(uε) ⊗ ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

+
√
ε(B · ξi,j)ξi,j ⊗ ∇uε

⃓⃓⃓⃓
⃓
2

χT b
i,j

(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

1
2ε

⃓⃓⃓⃓
⃓

N∑︂
k=1

k/∈{i,j}

1
2(∇ · ξk)∂uψ0(uε)

⃓⃓⃓⃓
⃓
2

χT b
i,j

(uε) dx

−
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
4ε(∇ · ξi,j)(∇ · ξk)∂uψi,j(uε) · ∂uψ0(uε)χT b

i,j
(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

1
2(∇ · ξi,j)(Id −ξi,j ⊗ ξi,j) : B ⊗ ∇(ψi,j ◦ uε)χT b

i,j
(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

ε

2(1 − |ξi,j|2)|B · ξi,j|2|∇uε|2χT b
i,j

(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

(Id −ξi,j ⊗ ξi,j) : Hε ⊗B|∇uε|χT b
i,j

(uε) dx
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−
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2(∇ · ξk)B · ∇(ψ0 ◦ uε)χT b

i,j
(uε) dx, (3.20)

where in the second step we have also used ∂uψi,j(uε) ⊗ ∇(ψi,j◦uε)
|∇(ψi,j◦uε)| : ∇uε = |∇(ψi,j ◦ uε)|.

Now note that the three terms on the right-hand side of (3.20) that involve a ∂uψ0(uε) or
∇(ψ0◦uε) can be directly estimated by CE[uε|ξ] by relying on the coercivity properties (3.15a),
(3.15b), and (3.15c). Similarly, the third-to-last term on the right-hand side is estimated by
CE[uε|ξ] using (3.4f) and (3.14d). This shows

ErrMCξ (3.21)

≤
N∑︂

i,j=1
i<j

ˆ
Rd

1
2

⃓⃓⃓⃓
⃓ 1√
ε
(∇ · ξi,j)

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

⊗ 1
2∂uψi,j(uε) ⊗ ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

+
√
ε(B · ξi,j)ξi,j ⊗ ∇uε

⃓⃓⃓⃓
⃓
2

χT b
i,j

(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

1
2(∇ · ξi,j)(Id −ξi,j ⊗ ξi,j) : B ⊗ ∇(ψi,j ◦ uε)χT b

i,j
(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

(Id −ξi,j ⊗ ξi,j) : Hε ⊗B|∇uε|χT b
i,j

(uε) dx

+ CE[uε|ξ]. (3.22)

By adding zeros, the first term on the right-hand side of (3.22) can be rewritten as

N∑︂
i,j=1
i<j

ˆ
Rd

1
2

⃓⃓⃓⃓
⃓[(B · ξi,j)ξi,j + (∇ · ξi,j)ξi,j] ⊗

√
ε∇uε

+ (∇ · ξi,j)
∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

⊗
(︄

1
2
√
ε
∂uψi,j(uε) ⊗ ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|
−

√
ε∇uε

)︄

+ (∇ · ξi,j)
(︄

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

− ξi,j

)︄
⊗

√
ε∇uε

⃓⃓⃓⃓
⃓
2

χT b
i,j

(uε) dx

≤
N∑︂

i,j=1
i<j

3
2

ˆ
Rd

|(B · ξi,j)ξi,j + (∇ · ξi,j)ξi,j|2 ε|∇uε|2χT b
i,j

(uε) dx

+
N∑︂

i,j=1
i<j

3
2∥∇ · ξi,j∥2

L∞
x

ˆ
Rd

⃓⃓⃓⃓
⃓ 1
2
√
ε
∂uψi,j(uε) ⊗ ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|
−

√
ε∇uε

⃓⃓⃓⃓
⃓
2

χT b
i,j

(uε) dx

+
N∑︂

i,j=1
i<j

3
2∥∇ · ξi,j∥2

L∞
x

ˆ
Rd

⃓⃓⃓⃓
⃓ ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

− ξi,j

⃓⃓⃓⃓
⃓
2

ε|∇uε|2χT b
i,j

(uε) dx,

where in the second step we have used Young’s inequality. Using the property (3.4c) of the
calibration (ξ, B) and the coercivity propeties (3.14d), (3.25) and (3.23) of the relative energy,
we see that the right-hand side is bounded by CE[uε|ξ].
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It remains to estimate the second and third term on the right-hand side of (3.22). Adding
zero, these terms are seen to be equal to

N∑︂
i,j=1
i<j

ˆ
Rd

(Id −ξi,j ⊗ ξi,j) : B ⊗ ∇uT
ε ·
(︄

1
2(∇ · ξi,j)∂uψi,j(uε)

−
N∑︂
k=1

k/∈{i,j}

1
2(∇ · ξk)∂uψ0(uε) −

(︃
ε∆uε − 1

ε
∂uW (uε)

)︃)︄
χT b

i,j
(uε) dx

+
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2(∇ · ξk)(Id −ξi,j ⊗ ξi,j) : B ⊗ ∇uT

ε · ∂uψ0(uε)χT b
i,j

(uε) dx

(3.11)
≤

N∑︂
i,j=1
i<j

C(δ̄)∥B∥2
L∞

x

ˆ
Rd

ε|(Id −ξi,j ⊗ ξi,j)∇uT
ε |2χT b

i,j
(uε) dx

+ δ̄

ˆ
Rd

1
2ε

⃓⃓⃓⃓(︃
ε∆uε − 1

ε
∂uW (uε)

)︃
+

N∑︂
i=1

(∇ · ξi)∂uψi(uε)
⃓⃓⃓⃓2

dx

+
N∑︂

i,j,k=1
i<j,k/∈{i,j}

1
2∥∇ · ξk∥L∞

x
∥B∥L∞

x

ˆ
Rd

|∇(ψ0 ◦ uε)|χT b
i,j

(uε) dx.

Here, in the last step we have used Young’s inequality for δ̄ > 0 small enough. Using the
coercivity properties (3.14e), (3.14d), and (3.15c) of the relative energy, we see that the first
and last term on the right-hand side are bounded by CE[uε|ξ].
Overall, we have shown

ErrMCξ ≤ C(δ̄)E[uε|ξ] + δ̄

ˆ
Rd

1
2ε

⃓⃓⃓⃓(︃
ε∆uε − 1

ε
∂uW (uε)

)︃
+

N∑︂
i=1

(∇ · ξi)∂uψi(uε)
⃓⃓⃓⃓2

dx,

which was the only missing ingredient for the proof of the theorem.

In the above estimates, we have used the following additional coercivity properties of the
relative entropy. We shall defer their proof to that of the other coercivity properties from
Proposition 39 and 38.

Lemma 43. Let W , ψi, ψi,j, ξi, and ξi,j be as in Proposition 39. We then have
N∑︂

i,j=1
i<j

ˆ
Rd

⃓⃓⃓⃓
⃓ ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

− ξi,j

⃓⃓⃓⃓
⃓
2

ε|∇uε|2χT b
i,j

(uε) dx ≤ CE[uε|ξ], (3.23)

N∑︂
i,j=1
i<j

ˆ
Rd

⃓⃓⃓⃓
⃓ 1
2
√
ε

|∇(ψi,j ◦ uε)|
|∇uε|

−
√
ε|∇uε|

⃓⃓⃓⃓
⃓
2

χT b
i,j

(uε) dx ≤ CE[uε|ξ], (3.24)

N∑︂
i,j=1
i<j

ˆ
Rd

⃓⃓⃓⃓
⃓ 1
2
√
ε
∂uψi,j(uε) ⊗ ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|
−

√
ε∇uε

⃓⃓⃓⃓
⃓
2

χT b
i,j

(uε) dx ≤ CE[uε|ξ], (3.25)

N∑︂
i,j=1
i<j

ˆ
Rd

⃓⃓⃓⃓
⃓ξi,j ⊗ ξi,j − ∇uT

ε ∇uε
|∇uε|2

⃓⃓⃓⃓
⃓
2

ε|∇uε|2χT b
i,j

(uε) dx ≤ CE[uε|ξ]. (3.26)
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3.4.2 Time evolution of the relative energy
We next give the technical computation that provides the estimate for the evolution of the
relative entropy stated in Lemma 42. Although in parts technical, it is at the very heart of the
proof of our results.

Proof of Lemma 42. By direct computations, using the definitions (3.2) and (3.1) as well as
(an analogue for ∂tξi of) the relation (3.9), we obtain

d
dtE[uε|ξ] = −

ˆ
Rd

(︃
ε∆uε − 1

ε
∂uW (uε)

)︃
∂tuε dx

−
N∑︂
i=1

ˆ
Rd

(∇ · ξi)∂uψi(uε) · ∂tuε dx

+
N∑︂
i=1

ˆ
Rd

∂tξi · ∇(ψi ◦ uε) dx

= −
ˆ
Rd

1
ε

⃓⃓⃓⃓
ε∆uε − 1

ε
∂uW (uε)

⃓⃓⃓⃓2
dx

−
N∑︂
i=1

ˆ
Rd

(∇ · ξi)∂uψi(uε) ·
(︃

∆uε − 1
ε2∂uW (uε)

)︃
dx

−
N∑︂

i,j=1
i<j

ˆ
Rd

1
2∂tξi,j · ∇(ψi,j ◦ uε)χT b

i,j
(uε) dx

+
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2∂tξk · ∇(ψ0 ◦ uε)χT b

i,j
(uε) dx.

By adding zeros and using again (3.9) as well as (3.10), we get
d
dtE[uε|ξ]

= −
ˆ
Rd

1
ε

⃓⃓⃓⃓
ε∆uε − 1

ε
∂uW (uε)

⃓⃓⃓⃓2
dx (3.27)

−
N∑︂
i=1

ˆ
Rd

(∇ · ξi)∂uψi(uε) ·
(︃

∆uε − 1
ε2∂uW (uε)

)︃
dx

−
N∑︂

i,j=1
i<j

ˆ
Rd

1
2(∂tξi,j + (B · ∇)ξi,j + (∇B)Tξi,j) · ∇(ψi,j ◦ uε)χT b

i,j
(uε) dx

+
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2(∂tξk + (B · ∇)ξk + (∇B)Tξk) · ∇(ψ0 ◦ uε)χT b

i,j
(uε) dx

−
N∑︂
i=1

ˆ
Rd

∇ξi : ∇(ψi ◦ uε) ⊗ B dx−
N∑︂
i=1

ˆ
Rd

∇B : ξi ⊗ ∇(ψi ◦ uε) dx.

Integrating by parts several times and making use of an approximation argument for ((ξi)i, B),
the last two terms in the equation above can be rewritten as

−
N∑︂
i=1

ˆ
Rd

∇ξi : ∇(ψi ◦ uε) ⊗ B dx−
N∑︂
i=1

ˆ
Rd

∇B : ξi ⊗ ∇(ψi ◦ uε) dx
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=
N∑︂
i=1

ˆ
Rd

ψi(uε)(B · ∇)(∇ · ξi) dx+
N∑︂
i=1

ˆ
Rd

ψi(uε)(∇B)T : ∇ξi dx

−
N∑︂
i=1

ˆ
Rd

∇B : ξi ⊗ ∇(ψi ◦ uε) dx

= −
N∑︂
i=1

ˆ
Rd

(∇ · ξi)B · ∇(ψi ◦ uε) dx−
N∑︂
i=1

ˆ
Rd

ψi(uε)(∇ · B)(∇ · ξi) dx

−
N∑︂
i=1

ˆ
Rd

ψi(uε)(ξi · ∇)(∇ · B) dx−
N∑︂
i=1

ˆ
Rd

(∇B)T : ξi ⊗ ∇(ψi ◦ uε) dx

−
N∑︂
i=1

ˆ
Rd

∇B : ξi ⊗ ∇(ψi ◦ uε) dx

=
N∑︂
i=1

ˆ
Rd

((∇ · B)ξi − (∇ · ξi)B) · ∇(ψi ◦ uε) dx

−
N∑︂
i=1

ˆ
Rd

∇B : ∇(ψi ◦ uε) ⊗ ξi dx−
N∑︂
i=1

ˆ
Rd

∇B : ξi ⊗ ∇(ψi ◦ uε) dx

(3.9)=
N∑︂
i=1

ˆ
Rd

((∇ · B)ξi − (∇ · ξi)B) · ∇(ψi ◦ uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

1
2∇B : ∇(ψi,j ◦ uε) ⊗ ξi,jχT b

i,j
(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

1
2∇B : ξi,j ⊗ ∇(ψi,j ◦ uε)χT b

i,j
(uε) dx

−
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2∇B : ∇(ψ0 ◦ uε) ⊗ ξkχT b

i,j
(uε) dx

−
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2∇B : ξk ⊗ ∇(ψ0 ◦ uε)χT b

i,j
(uε) dx.

By adding zero, we obtain

−
N∑︂
i=1

ˆ
Rd

∇ξi : ∇(ψi ◦ uε) ⊗ B dx−
N∑︂
i=1

ˆ
Rd

∇B : ξi ⊗ ∇(ψi ◦ uε) dx

=
N∑︂
i=1

ˆ
Rd

((∇ · B)ξi − (∇ · ξi)B) · ∇(ψi ◦ uε) dx (3.28)

−
N∑︂

i,j=1
i<j

ˆ
Rd

1
2∇B :

(︄
ξi,j − ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

)︄
⊗
(︄
ξi,j − ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

)︄

× |∇(ψi,j ◦ uε)|χT b
i,j

(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

1
2∇B : ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|
⊗ ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|
|∇(ψi,j ◦ uε)|χT b

i,j
(uε) dx
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+
N∑︂

i,j=1
i<j

ˆ
Rd

1
2∇B : ξi,j ⊗ ξi,j|∇(ψi,j ◦ uε)|χT b

i,j
(uε) dx

−
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2∇B : ∇(ψ0 ◦ uε) ⊗ ξkχT b

i,j
(uε) dx

−
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2∇B : ξk ⊗ ∇(ψ0 ◦ uε)χT b

i,j
(uε) dx.

Using the relation

−
ˆ
Rd

Hε ·B|∇uε| dx

(3.16)= −
ˆ
Rd

ε∇B : ∇uT
ε ∇uε dx+

ˆ
Rd

(∇ · B)
(︃
ε

2 |∇uε|2 + 1
ε
W (uε)

)︃
dx,

in view of ∑︁N
i,j=1:i<j χT b

i,j
(uε) = 1 we can rewrite the third term on the right-hand side as

N∑︂
i,j=1
i<j

ˆ
Rd

1
2∇B : ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|
⊗ ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|
|∇(ψi,j ◦ uε)|χT b

i,j
(uε) dx

=
ˆ
Rd

Hε ·B|∇uε| dx+
ˆ
Rd

(∇ · B)
(︃
ε

2 |∇uε|2 + 1
ε
W (uε)

)︃
dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

∇B :
(︄

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

⊗ ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

1
2 |∇(ψi,j ◦ uε)| − ε∇uT

ε ∇uε
)︄

× χT b
i,j

(uε) dx.

Inserting this relation into (3.28) and inserting the resulting equation into (3.27), we obtain by
collecting terms and adding and subtracting ∑︁N

i,j=1:i<j
´
Rd

1
2ξi,j · (∂tξi,j + (B · ∇)ξi,j)|∇(ψi,j ◦

uε)|χT b
i,j

(uε) dx

d
dtE[uε|ξ]

= −
ˆ
Rd

1
ε

⃓⃓⃓⃓
ε∆uε − 1

ε
∂uW (uε)

⃓⃓⃓⃓2
dx+

ˆ
Rd

Hε ·B|∇uε| dx

−
N∑︂
i=1

ˆ
Rd

(∇ · ξi)∂uψi(uε) ·
(︃

∆uε − 1
ε2∂uW (uε)

)︃
dx

−
N∑︂
i=1

ˆ
Rd

(∇ · ξi)B · ∇(ψi ◦ uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

1
2(∂tξi,j + (B · ∇)ξi,j + (∇B)Tξi,j)

·
(︄
ξi,j − ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

)︄
|∇(ψi,j ◦ uε)|χT b

i,j
(uε) dx

−
N∑︂

i,j=1
i<j

ˆ
Rd

1
2ξi,j · (∂tξi,j + (B · ∇)ξi,j)|∇(ψi,j ◦ uε)|χT b

i,j
(uε) dx
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+
ˆ
Rd

(∇ · B)
(︃
ε

2 |∇uε|2 + 1
ε
W (uε) +

N∑︂
i=1

ξi · ∇(ψi ◦ uε)
)︃

dx

+
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2(∂tξk + (B · ∇)ξk + (∇B)Tξk) · ∇(ψ0 ◦ uε)χT b

i,j
(uε) dx

−
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2∇B : ∇(ψ0 ◦ uε) ⊗ ξkχT b

i,j
(uε) dx

−
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2∇B : ξk ⊗ ∇(ψ0 ◦ uε)χT b

i,j
(uε) dx

−
N∑︂

i,j=1
i<j

ˆ
Rd

1
2∇B :

(︄
ξi,j − ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

)︄
⊗
(︄
ξi,j − ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

)︄

× |∇(ψi,j ◦ uε)|χT b
i,j

(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

∇B :
(︄

∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

⊗ ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

1
2 |∇(ψi,j ◦ uε)| − ε∇uT

ε ∇uε
)︄

× χT b
i,j

(uε) dx.

Lemma 42 follows from this equation using the definitions of the errors (3.19a) – (3.19e) and
the next formula (whose derivation relies on ∑︁N

i,j=1:i<j χT b
i,j

(uε) = 1 and repeated addition of
zero).

−
ˆ
Rd

1
ε

⃓⃓⃓⃓
ε∆uε − 1

ε
∂uW (uε)

⃓⃓⃓⃓2
+
ˆ
Rd

Hε ·B|∇uε| dx

−
N∑︂
i=1

ˆ
Rd

(∇ · ξi)∂uψi(uε) ·
(︃

∆uε − 1
ε2∂uW (uε)

)︃
dx

−
N∑︂
i=1

ˆ
Rd

(∇ · ξi)B · ∇(ψi ◦ uε) dx

= −
N∑︂

i,j=1
i<j

ˆ
Rd

1
2ε
⃓⃓⃓
Hε −ε(B · ξi,j)ξi,j|∇uε|

⃓⃓⃓2
χT b

i,j
(uε) dx

−
ˆ
Rd

1
2ε

(︄⃓⃓⃓⃓
ε∆uε − 1

ε
∂uW (uε)

⃓⃓⃓⃓2
− | Hε |2

)︄
dx

−
ˆ
Rd

1
2ε

⃓⃓⃓⃓
ε∆uε − 1

ε
∂uW (uε)

⃓⃓⃓⃓2
dx

−
N∑︂
i=1

ˆ
Rd

(∇ · ξi)∂uψi(uε) ·
(︃

∆uε − 1
ε2∂uW (uε)

)︃
dx

−
N∑︂
i=1

ˆ
Rd

(∇ · ξi)B · ∇(ψi ◦ uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

ε

2 |B · ξi,j|2|ξi,j|2|∇uε|2χT b
i,j

(uε) dx
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+
N∑︂

i,j=1
i<j

ˆ
Rd

(Id −ξi,j ⊗ ξi,j) : Hε ⊗B|∇uε|χT b
i,j

(uε) dx

= −
N∑︂

i,j=1
i<j

ˆ
Rd

1
2ε
⃓⃓⃓
Hε −ε(B · ξi,j)ξi,j|∇uε|

⃓⃓⃓2
χT b

i,j
(uε) dx

−
ˆ
Rd

1
2ε

⃓⃓⃓⃓
⃓
(︃
ε∆uε − 1

ε
∂uW (uε)

)︃
+

N∑︂
i=1

(∇ · ξi)∂uψi(uε)
⃓⃓⃓⃓
⃓
2

dx

−
ˆ
Rd

1
2ε

(︄⃓⃓⃓⃓
ε∆uε − 1

ε
∂uW (uε)

⃓⃓⃓⃓2
− | Hε |2

)︄
dx

+
ˆ
Rd

1
2ε

⃓⃓⃓⃓
⃓
N∑︂
i=1

(∇ · ξi)∂uψi(uε)
⃓⃓⃓⃓
⃓
2

dx

−
N∑︂
i=1

ˆ
Rd

(∇ · ξi)B · ∇(ψi ◦ uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

ε

2 |B · ξi,j|2|ξi,j|2|∇uε|2χT b
i,j

(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

(Id −ξi,j ⊗ ξi,j) : Hε ⊗B|∇uε|χT b
i,j

(uε) dx.

3.4.3 Derivation of the coercivity properties
We next show how our assumption (A4) implies the coercivity properties of our relative entropy.

Proof of Proposition 39. To prove (3.15a)-(3.15c), let i, j ∈ {1, . . . , N}, i ̸= j; suppose that
(x, t) is such that uε(x, t) ∈ Ti,j. In particular, we then have χT b

i,j
(uε) = 1.

Proof of (3.15a) and (3.15b): Starting from (3.12), expanding the second square, and making
use of Young’s inequality, the fact that for each (x, t) there exists at most three indices
k ∈ {1, . . . , N} \ {i, j} with ξk(x, t) ̸= 0, and (3.13), we obtain

ε

2 |∇uε|2 + 1
ε
W (uε) +

N∑︂
ℓ=1

ξℓ · ∇(ψℓ ◦ uε)

≥ 1
2

⃓⃓⃓⃓
⃓√ε∇uε − 1√

ε

(︄
1
2∂uψi,j(uε) ⊗ ξi,j −

N∑︂
k=1

k/∈{i,j}

1
2
√

3∂uψ0(uε) ⊗
√

3ξk
)︄⃓⃓⃓⃓
⃓
2

+ 1
2ε

⎡⎣2W (uε) −
(︄

|ξi,j|2 + (4 − δcal)
N∑︂
k=1

k/∈{i,j}

|
√

3ξi,j · ξk|2
)︄⃓⃓⃓

1
2∂uψi,j(uε)

⃓⃓⃓2

−
N∑︂
k=1

k/∈{i,j}

(︂
|
√

3ξk|2 + 1
4−δcal

)︂ ⃓⃓⃓
1

2
√

3∂uψ0(uε)
⃓⃓⃓2 ⎤⎦.

114



3.4. The relative energy argument

Then, by adding zeros and using |
√

3ξk| ≤ 1, we obtain

ε

2 |∇uε|2 + 1
ε
W (uε) +

N∑︂
ℓ=1

ξℓ · ∇(ψℓ ◦ uε)

≥ 1
2

⃓⃓⃓⃓
⃓√ε∇uε − 1√

ε

(︄
1
2∂uψi,j(uε) ⊗ ξi,j −

N∑︂
k=1

k/∈{i,j}

1
2
√

3∂uψ0(uε) ⊗
√

3ξk
)︄⃓⃓⃓⃓
⃓
2

(3.29)

+ 1
2ε

⎡⎣2W (uε) −
⃓⃓⃓

1
2∂uψi,j(uε)

⃓⃓⃓2
− (5

4 + δcal + δcoer,1)
⃓⃓⃓

1
2∂uψ0(uε)

⃓⃓⃓2

− δcoer,2 |∂uψi,j(uε) · ∂uψ0(uε)|
⎤⎦

+ δcoer,1

2ε
⃓⃓⃓

1
2∂uψ0(uε)

⃓⃓⃓2
+ δcoer,2

2ε |∂uψi,j(uε) · ∂uψ0(uε)| ,

where δcal, δcoer,1, δcoer,2, δcoer,3 > 0 are arbitrarily small constants. Finally, using (A4) and
integrating over the set {x : uε(x, t) ∈ Ti,j}, we can conclude about the validity of (3.15a)
and (3.15b).
Proof of (3.15c): By adding zero, we can write

∇(ψ0 ◦ uε) = ∂uψ0(uε) · ∇uε

= 1√
ε
∂uψ0(uε) ·

[︄
√
ε∇uε − 1√

ε

(︄
1
2∂uψi,j ⊗ ξi,j −

N∑︂
k=1

k/∈{i,j}

1
2
√

3∂uψ0(uε) ⊗
√

3ξk
)︄]︄

+ 1
2ε∂uψ0(uε) · ∂uψi,j(uε)ξi,j − 1

ε

N∑︂
k=1

k/∈{i,j}

1
2
√

3 |∂uψ0(uε)|2
√

3ξk .

Then, Young’s inequality yields

|∇(ψ0 ◦ uε)|

≤ 1
2ε |∂uψ0(uε)|2

+ 1
2

⃓⃓⃓⃓
⃓√ε∇uε − 1√

ε

(︄
1
2∂uψi,j(uε) ⊗ ξi,j −

N∑︂
k=1

k/∈{i,j}

1
2
√

3∂uψ0(uε) ⊗
√

3ξk
)︄⃓⃓⃓⃓
⃓
2

+ 1
2ε |∂uψ0(uε) · ∂uψi,j(uε)||ξi,j|

+ 1
ε

N∑︂
k=1

k/∈{i,j}

1
2
√

3 |∂uψ0(uε)|2|
√

3ξk| ,

Using Young’s inequality and the estimate (3.29), we can conclude about the validity of
(3.15c).

Proof of Proposition 38. Proof of (3.14a), (3.14b) and (3.14c): Using (3.9) and adding zero,
we obtain

E[uε|ξ] = E[uε] −
N∑︂

i,j=1
i<j

ˆ
Rd

1
2 |∇(ψi,j ◦ uε)|χT b

i,j
(uε) dx
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+
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2ξk · ∇(ψ0 ◦ uε)χT b

i,j
(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

1
2

(︃
1 − ξi,j · ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

)︃
|∇(ψi,j ◦ uε)|χT b

i,j
(uε) dx .

From assumption (A4), we can deduce
1
2 |∇(ψi,j ◦ uε)|χT b

i,j
(uε) ≤ 1

2 |∂uψi,j(uε)||∇uε|χT b
i,j

(uε) ≤
√︂

2W (uε)|∇uε|χT b
i,j

(uε) .

Hence, using the definition of E[uε], we have

E[uε|ξ] +
N∑︂

i,j,k=1
i<j,k/∈{i,j}

ˆ
Rd

1
2∥ξk∥L∞

x
|∇(ψ0 ◦ uε)|χT b

i,j
(uε) dx

≥
N∑︂

i,j=1
i<j

ˆ
Rd

1
2

(︄
√
ε|∇uε| −

√︂
2W (uε)√

ε

)︄2

χT b
i,j

(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

1
2

(︃
1 − ξi,j · ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

)︃
|∇(ψi,j ◦ uε)|χT b

i,j
(uε) dx .

Then, noting that ⃓⃓⃓⃓
⃓ ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

− ξi,j

⃓⃓⃓⃓
⃓
2

|∇(ψi,j ◦ uε)|χT b
i,j

(uε)

≤ 2
(︄

1 − ξi,j · ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

)︄
|∇(ψi,j ◦ uε)|χT b

i,j
(uε)

together with the fact that ∑︁N
i,j=1:i<j χT b

i,j
(uε) = 1, we see that both (3.14a) and (3.14b)

follow from the preceding two formulas and (3.15c). Furthermore, using

min{dist2(x, Ii,j), 1} ≤ C(1 − |ξi,j|) ≤ C

(︄
1 − ξi,j · ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|

)︄
,

we obtain (3.14c).
Proof of (3.14d): By exploiting (3.9) and by adding zeros, we obtain(︃

ε

2 |∇uε|2 + 1
ε
W (uε)

)︃
χTi,j

(uε)

≤
[︄
ε

2 |∇uε|2 + 1
ε
W (uε) +

N∑︂
ℓ=1

ξℓ · ∇(ψℓ ◦ uε)
]︄
χT b

i,j
(uε)

+
[︄

1
2 |∇(ψi,j ◦ uε)| + 1

2 |∇(ψ0 ◦ uε)|
]︄
χT b

i,j
(uε) . (3.30)

As a consequence, we have
N∑︂

i,j=1
i<j

ˆ
Rd

min{dist2(x, Ii,j), 1}
(︃
ε

2 |∇uε|2 + 1
ε
W (uε)

)︃
χT b

i,j
(uε) dx
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≤ E[uε|ξ] +
N∑︂

i,j=1
i<j

ˆ
Rd

min{dist2(x, Ii,j), 1}|∇(ψi,j ◦ uε)|χT b
i,j

(uε) dx

+
N∑︂

i,j=1
i<j

ˆ
Rd

|∇(ψ0 ◦ uε)|χT b
i,j

(uε) dx ,

whence we deduce (3.14d) from (3.15c) and (3.14c).

Proof of (3.14e): Expanding the square and using 1 − c dist2(·, Ii,j) ≤ |ξi,j| ≤ max{1 −
C dist2(·, Ii,j)), 0}, we obtain

ε|(Id −ξi,j ⊗ ξi,j)∇uT
ε |2χTi,j

(uε) ≤
[︂
ε|∇uε|2 − ε|(ξi,j · ∇)uε|2

]︂
χTi,j

(uε)
+ C min{dist2(·, Ii,j), 1}ε|∇uε|2χTi,j

(uε) .

Then, by adding zeros, we obtain

ε|(Id −ξi,j ⊗ ξi,j)∇uT
ε |2χTi,j

(uε)

=
[︄
ε|∇uε|2 + 1

ε
2W (uε) − ξi,j · ∇(ψi,j ◦ uε) +

N∑︂
k=1

k/∈{i,j}

ξk · ∇(ψ0 ◦ uε)
]︄
χT b

i,j
(uε)

−
N∑︂
k=1

k/∈{i,j}

ξk · ∇(ψ0 ◦ uε)χT b
i,j

(uε) +
[︃ 1
4ε |∂uψi,j(uε)|2 − 1

ε
2W (uε)

]︃
χT b

i,j
(uε)

−
[︃ 1
4ε |∂uψi,j(uε)|2 − ξi,j · ∇(ψi,j ◦ uε) + ε|(ξi,j · ∇)uε|2

]︃
χT b

i,j
(uε)

+ C min{dist2(·, Ii,j), 1}ε|∇uε|2χT b
i,j

(uε)

≤ 2
[︄
ε

2 |∇uε|2 + 1
ε
W (uε) +

N∑︂
ℓ=1

ξℓ · ∇(ψℓ ◦ uε)
]︄
χT b

i,j
(uε)

+
N∑︂
k=1

k/∈{i,j}

∥ξk∥L∞
x

|∇(ψ0 ◦ uε)|χT b
i,j

(uε)

+
[︃ 1
4ε |∂uψi,j(uε)|2 − 1

ε
2W (uε)

]︃
χT b

i,j
(uε)

−
⃓⃓⃓⃓
⃓ 1
2
√
ε
∂uψi,j(uε) −

√
ε(ξi,j · ∇)uε

⃓⃓⃓⃓
⃓
2

χT b
i,j

(uε)

+ C min{dist2(·, Ii,j), 1}ε|∇uε|2χT b
i,j

(uε) ,

due to (3.9). Noting that assumption (A4) implies

1
4
⃓⃓⃓
∂uψi,j(uε)

⃓⃓⃓2
χT b

i,j
(uε) ≤ 2W (uε)χT b

i,j
(uε) ,

the validity of (3.14e) follows from (3.15c) and (3.14d).

We next prove the additional coercivity properties stated in Lemma 43.
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Proof of Lemma 43. Proof of (3.23): Note that (3.30) yields

N∑︂
i,j=1
i<j

ˆ
Rd

⃓⃓⃓⃓
⃓ ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

− ξi,j

⃓⃓⃓⃓
⃓
2

ε|∇uε|2χT b
i,j

(uε) dx

≤ 8E[uε|ξ] +
N∑︂

i,j=1
i<j

ˆ
Rd

⃓⃓⃓⃓
⃓ ∇(ψi,j ◦ uε)
|∇(ψi,j ◦ uε)|

− ξi,j

⃓⃓⃓⃓
⃓
2

|∇(ψi,j ◦ uε)|χT b
i,j

(uε) dx

+
N∑︂

i,j=1
i<j

4
ˆ
Rd

|∇(ψ0 ◦ uε)|χT b
i,j

(uε) dx .

Hence, using (3.15c) and (3.14b), we obtain (3.23).

Proof of (3.24) and (3.25): First, we compute
⃓⃓⃓⃓
⃓ 1
2
√
ε

|∇(ψi,j ◦ uε)|
|∇uε|

−
√
ε|∇uε|

⃓⃓⃓⃓
⃓
2

χT b
i,j

(uε)

=
[︄

1
ε

|∇(ψi,j ◦ uε)|2
4|∇uε|2

+ ε|∇uε|2 − |∇(ψi,j ◦ uε)|
]︄
χT b

i,j
(uε)

and ⃓⃓⃓⃓
⃓ 1
2
√
ε
∂uψi,j(uε) ⊗ ∇(ψi,j ◦ uε)

|∇(ψi,j ◦ uε)|
−

√
ε∇uε

⃓⃓⃓⃓
⃓
2

χT b
i,j

(uε) dx

=
[︃ 1
4ε |∂uψi,j(uε)|2 + ε|∇uε|2 − |∇(ψi,j ◦ uε)|

]︃
χT b

i,j
(uε) .

Then, from assumption (A4) we deduce

|∇(ψi,j ◦ uε)|2
|∇uε|2

χT b
i,j

(uε) ≤ |∂uψi,j(uε)|2χT b
i,j

(uε) ≤ 8W (uε)χT b
i,j

(uε) .

Finally, by exploiting (3.9) and by adding zero, one can conclude about the validity of both
(3.25) and (3.24), due to (3.15a).

Proof of (3.26): Since we have
⃓⃓⃓⃓
⃓ξi,j ⊗ ξi,j − ∇uT

ε ∇uε
|∇uε|2

⃓⃓⃓⃓
⃓
2

ε|∇uε|2χT b
i,j

(uε)

≤
[︄
2 − 2ξi,j · ∇uT

ε ∇uε · ξi,j
|∇uε|2

]︄
ε|∇uε|2χT b

i,j
(uε)

≤ 2
[︂
ε|∇uε|2 − ε|(ξi,j · ∇)uε|2

]︂
χT b

i,j
(uε)

≤ 2ε|(Id −ξi,j ⊗ ξi,j) · ∇uT
ε |2χTi,j

(uε) + C min{dist2(·, Ii,j), 1}ε|∇uε|2χT b
i,j

(uε)

(where in the last step we have used the estimate 1 − C dist2(·, Ii,j) ≤ |ξi,j| ≤ max{1 −
c dist2(·, Ii,j)), 0}), the bound (3.26) follows from (3.14e) and (3.14d).
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3.4.4 Convergence of the phase indicator functions
We now show how to obtain the error estimate at the level of the indicator functions.

Proof of Proposition 41. Using (3.1) and the fact that supp ∂tχ̄i ⊂ ∂ supp χ̄i as well as
ϑi = 0 on ∂ supp χ̄i, we compute

d
dt

ˆ
Rd

(ψi(uε) − χ̄i)ϑi dx

=
ˆ
Rd

1
ε
∂uψi(uε) ·

(︃
ε∆uε − 1

ε
∂uW (uε)

)︃
ϑi dx+

ˆ
Rd

(ψi(uε) − χ̄i)∂tϑi dx

=
ˆ
Rd

1
ε
∂uψi(uε) ·

(︃
ε∆uε − 1

ε
∂uW (uε)

)︃
ϑi dx+

ˆ
Rd

B · ∇(ψi ◦ uε)ϑi dx

+
ˆ
Rd

(∇ · B)(ψi(uε) − χ̄i)ϑi dx+
ˆ
Rd

(ψi(uε) − χ̄i) (∂tϑi +B · ∇ϑi) dx , (3.31)

where we added a zero and then integrated by parts. Note that we used the fact that ϑi = 0
on ∂{χ̄i = 1}.
By (3.6), the last two terms on the right hand side of (3.31) can be bounded by

(︂
∥∇ · B∥L∞

x
+ C

)︂ ˆ
Rd

|ψi(uε) − χ̄i||ϑi| dx.

As for the second term on the right hand side of (3.31), we perform the folllowing decomposition
ˆ
Rd

B · ∇(ψi ◦ uε)ϑi dx =
N∑︂

j,k=1
j<k

ˆ
Rd

(B · ξj,k)ξj,k · ∇(ψi ◦ uε)ϑiχT b
j,k

(uε) dx

+
N∑︂

j,k=1
j<k

ˆ
Rd

[(Id −ξj,k ⊗ ξj,k)B)] · ∇(ψi ◦ uε)ϑiχT b
j,k

(uε) dx ,

whence, by adding a zero and using ∑︁N
j,k=1:j ̸=k χT b

j,k
= 1,

ˆ
Rd

B · ∇(ψi ◦ uε)ϑi dx

=
ˆ
Rd

1
ε

Hε · ∇uT
ε

|∇uε|
· ∂uψi(uε) dx

+
N∑︂

j,k=1
j<k

ˆ
Rd

1
ε

[ε(B · ξj,k)ξj,k|∇uε| − Hε] · ∇uT
ε

|∇uε|
· ∂uψi(uε)ϑiχT b

j,k
(uε) dx

+
N∑︂

j,k=1
j<k

ˆ
Rd

[(Id −ξj,k ⊗ ξj,k)B)] · ∇(ψi ◦ uε)ϑiχT b
j,k

(uε) dx .

Note that the last two terms are nonzero only if j = i or k = i. Hence, using Young’s
inequality, the second term can be estimated by

1
2

N∑︂
k=1
k ̸=i

ˆ
Rd

1
ε

|ε(B · ξi,k)ξi,k|∇uε| − Hε|2 χT b
i,k

(uε) dx
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+ 1
2

N∑︂
k=1
k ̸=i

ˆ
Rd

1
ε

|∂uψi(uε)|2|ϑi|2χT b
i,k

(uε) dx .

As for the third one, we obtain using Young’s inequality and exploiting the coercivity property
(3.14e)

N∑︂
k=1
k ̸=i

ˆ
Rd

[(Id −ξi,k ⊗ ξi,k)B)] · ∇(ψi ◦ uε)ϑiχT b
i,k

(uε) dx

≤
N∑︂
k=1
k ̸=i

ˆ
Rd

ε|(Id −ξi,k ⊗ ξi,k)B)]∇uT
ε |2χT b

i,k
(uε) dx

+
N∑︂
k=1
k ̸=i

ˆ
Rd

1
ε

|∂uψi|2|ϑi|2χT b
i,k

(uε) dx

≤ CE[uε|ξ] +
N∑︂
k=1
k ̸=i

ˆ
Rd

1
ε

|∂uψi|2|ϑi|2χT b
i,k

(uε) dx.

In summary, we have shown

d
dt

ˆ
Rd

(ψi(uε) − χ̄i)ϑi dx

≤ C

ˆ
Rd

|ψi(uε) − χ̄i||ϑi| dx+
N∑︂
k=1
k ̸=i

ˆ
Rd

1
ε

|∂uψi(uε)|2|ϑi|2χT b
i,k

(uε) dx

+ 1
2

N∑︂
k=1
k ̸=i

ˆ
Rd

1
ε

|ε(B · ξi,k)ξi,k|∇uε| − Hε|2 χT b
i,k

(uε) dx

+
ˆ
Rd

1
ε
∂uψi(uε) ·

(︃
ε∆uε − 1

ε
∂uW (uε)

)︃
ϑi dx+

ˆ
Rd

1
ε

Hε · ∇uT
ε

|∇uε|
· ∂uψi(uε) dx.

We estimate the two terms in the last line
ˆ
Rd

1
ε
∂uψi(uε) ·

(︃
ε∆uε − 1

ε
∂uW (uε)

)︃
ϑi dx+

ˆ
Rd

1
ε

Hε · ∇uT
ε

|∇uε|
· ∂uψi(uε)ϑi dx

=
ˆ
Rd

1
ε

[︄ (︃
ε∆uε − 1

ε
∂uW (uε)

)︃
+ Hε · ∇uT

ε

|∇uε|

]︄
· ∂uψi(uε)ϑi dx

≤ 1
2

ˆ
Rd

1
ε

[︄ (︃
ε∆uε − 1

ε
∂uW (uε)

)︃
+ Hε · ∇uT

ε

|∇uε|

]︄2

dx+ 1
2

ˆ
Rd

1
ε

|∂uψi(uε)|2|ϑi|2 dx

≤
ˆ
Rd

1
2ε

⎛⎝⃓⃓⃓⃓⃓ε∆uε − 1
ε
∂uW (uε)

⃓⃓⃓⃓
⃓
2

− | Hε |2
⎞⎠ dx−

ˆ
Rd

1
2ε

[︄
Id −∇uT

ε ∇uε
|∇uε|2

]︄
: Hε ⊗ Hε dx

+ 1
2

ˆ
Rd

1
ε

|∂uψi(uε)|2|ϑi|2 dx

≤
ˆ
Rd

1
2ε

⎛⎝⃓⃓⃓⃓⃓ε∆uε − 1
ε
∂uW (uε)

⃓⃓⃓⃓
⃓
2

− | Hε |2
⎞⎠ dx+ 1

2

ˆ
Rd

1
ε

|∂uψi(uε)|2|ϑi|2 dx ,
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where we used the fact that
[︂

Id −∇uT
ε ∇uε

|∇uε|2
]︂

is a positive semidefinite matrix. Since |∂uψi(uε)| ≤
C
√︂

2W (uε) and |ϑi| ≤ min{dist2(·, ∂ supp χ̄i), 1} ≤ C min{dist(·, Ii,k), 1} (see (3.5)), from
(3.14d) it follows that

ˆ
Rd

1
ε

|∂uψi(uε)|2|ϑi|2 dx =
N∑︂
k=1
k ̸=i

ˆ
Rd

1
ε

|∂uψi(uε)|2|ϑi|2χT b
i,k

(uε) dx

≤ C
N∑︂
k=1
k ̸=i

ˆ
Rd

1
ε

2W (uε)|ϑi|2χT b
i,k

(uε) dx

≤ CE[uε|ξ] .

Summarizing the previous estimates, we get

d
dt

ˆ
Rd

(ψi(uε) − χ̄i)ϑi dx

≤ CE[uε|ξ] + C

ˆ
Rd

|ψi(uε) − χ̄i||ϑi| dx

+ 1
2

N∑︂
k=1
k ̸=i

ˆ
Rd

1
ε

|ε(B · ξi,k)ξi,k|∇uε| − Hε|2 χT b
i,k

(uε) dx

+
ˆ
Rd

1
2ε

⎛⎝⃓⃓⃓⃓⃓ε∆uε − 1
ε
∂uW (uε)

⃓⃓⃓⃓
⃓
2

− | Hε |2
⎞⎠ dx.

An application of the Gronwall inequality to Theorem 40 yields

sup
t∈[0,T ]

E[uε|ξ](t) +
N∑︂
i=1

N∑︂
k=1
k ̸=i

ˆ
Rd

1
ε

|ε(B · ξi,k)ξi,k|∇uε| − Hε|2 χT b
i,k

(uε) dx

+
ˆ
Rd

1
2ε

(︄⃓⃓⃓⃓
⃓ε∆uε − 1

ε
∂uW (uε)

⃓⃓⃓⃓
⃓
2

− | Hε |2
)︄

dx ≤ C(d, T, (χ̄(t))t∈[0,T ])E[uε|ξ](0).

Integrating the previous formula in time and inserting this estimate, we deduce by the condition
(3.5) on the weight ϑiˆ

Rd

(ψi(uε(·, T )) − χ̄i(·, T ))ϑi(·, T ) dx

≤ C(d, T, (χ̄(t))t∈[0,T ])E[uε|ξ](0) +
ˆ T

0

ˆ
Rd

(ψi(uε) − χ̄i)ϑi dx dt.

The Gronwall inequality now implies our result, using again (3.5).

3.4.5 Proof of the main theorem
Our main theorem (Theorem 29) is a simple consequence of Theorem 40 and Proposition 41.

Proof. Combining Theorem 40 and Proposition 41, we obtain the desired bounds

sup
t∈[0,T ]

Eε[uε|ξ](t) ≤ Cε,
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sup
t∈[0,T ]

max
i∈{1,...,N}

ˆ
Rd

|ψi(uε(·, t)) − χ̄i(·, t)| dist(x, ∂ supp χ̄i(·, t)) dx ≤ Cε.

Finally, proceeding as in [48, Sec. 3], one can conclude about the error estimate of order ε1/2

in terms of the L1-norm.

3.5 Construction of well-prepared initial data
In this section we construct an initial datum uε(·, 0) complying with the following relative
energy estimate:

E[uε|ξ](0) ≤ Cε , (3.32)

where the constant C > 0 depends on the initial data (χ̄1(·, 0), . . . , χ̄N (·, 0)) and the potential
W satisfying assumptions (A1)–(A4) (see Sec. 3.2). In particular, we provide an explicit
construction of uε(·, 0) for a network of interfaces meeting at two-dimensional triple junctions
(d = 2) satisfying the 120 degree angle condition. To this aim, we adopt a geometric setting
for the initial network which was already introduced in [46, Sec. 5-6] in the general time-
dependent case. A similar construction can be provided for three-dimensional double bubbles
(d = 3) satisfying the correct angle condition along the triple line, this time by exploiting the
corresponding geometric setting given by [57, Sec. 3-4].
Note that from our construction and the fast decay of the Modica-Mortola profiles towards the
pure phases αi, 1 ≤ i ≤ N , it will also be apparent that our initial data uε(·, 0) also satisfies
the estimate

max
i∈{1,...,N}

ˆ
Rd

|ψi(uε(·, 0)) − χ̄i(·, 0)| dist(x, ∂ supp χ̄i(·, 0)) dx ≤ Cε.

In fact, for this lower-order quantity one may even show the stronger bound O(ε2). In summary,
the considerations in the present section will establish Proposition 31.

3.5.1 Rescaled one-dimensional equilibrium profiles
For any distinct i, j ∈ {1, ..., N}, let γi,j : [−1, 1] → R2 be the unique constant-speed C1

path connecting αi to αj such that γi,j(−1) = αi, γi,j(1) = αj, and
ˆ 1

−1

√︂
2W (γi,j(r))|γ′

i,j(r)|dr = 1 .

Let θ̃i,j : R → [−1,+1] be the unique solution of the ODE

θ̃
′
i,j(s) = |γ′

i,j(θ̃i,j(s))|−1
√︂

2W (γi,j(θ̃i,j(s))

with boundary conditions θ̃i,j(±∞) = ±1. Due to the growth properties of W in the
neighborhoods of αi and αj (see condition (A1) in Sec. 3.2), the profile θ̃i,j approaches its
boundary values ±1 at ±∞ with a power law of order 2

q−2 for q > 2 and an exponential rate
for q = 2 [121].

Let s0
i,j ∈ R such that θ̃i,j(s0

i,j) = 0. Let ρ > 0 be such that θ̃i,j(ρ + s0
i,j) = θ̄

+
i,j and

θ̃i,j(−ρ+ s0
i,j) = −θ̄−

i,j for θ̄±
i,j ∈ (0, 1). We define the rescaled one-dimensional equilibrium
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profiles θi,j : R → γi,j as

θi,j(s) :=

⎧⎪⎪⎨⎪⎪⎩
γi,j

(︃
1
θ̄

+
i,j

θ̃i,j(s0
i,j ∨ (s+ s0

i,j) ∧ (ρ+ s0
i,j))

)︃
for s ∈ [0,∞) ,

γi,j

(︃
1
θ̄

−
i,j

θ̃i,j((−ρ+ s0
i,j) ∨ (s+ s0

i,j) ∧ s0
i,j)
)︃

for s ∈ (−∞, 0) ,
(3.33)

so that θi,j(s) = αi for any s ≤ ρ and θi,j(s) = αj for any s ≥ ρ. Furthermore, we have

(θi,j)′(s) (3.34)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
θ̄

+
i,j

√︂
2W (θi,j(s))

γ′
i,j

|γ′
i,j |

(︃
1
θ̄

+
i,j

θ̃i,j(s0
i,j ∨ (s+ s0

i,j) ∧ (ρ+ s0
i,j))

)︃
for s ∈ [0, ρ),

1
θ̄

−
i,j

√︂
2W (θi,j(s))

γ′
i,j

|γ′
i,j |

(︃
1
θ̄

−
i,j

θ̃i,j((−ρ+ s0
i,j) ∨ (s+ s0

i,j) ∧ s0
i,j)
)︃

for s ∈ (−ρ, 0),

0 for s ∈ (−∞,−ρ] ∪ [ρ,+∞).
(3.35)

Note that, if W satisfies additional symmetry properties along the path γi,j, then θ̃i,j is odd,
thus s0

i,j = 0 and θ̄
−
i,j = θ̄

+
i,j. Moreover, if W satisfies additional symmetry properties with

respect to all the paths γi,j, then all θ̄±
i,j coincide.

3.5.2 Geometry of the initial network
For simplicity of notation, we shall omit the evaluation at initial time throughout this chapter,
i. e. we write χ̄ instead of χ̄(·, 0). Let χ̄ = (χ̄1, ..., χ̄N) be an initial partition of R2 with
interfaces ∂{χ̄i = 1} ∩ ∂{χ̄j = 1} =: Ii,j for distinct i, j ∈ {1, ..., N}. We decompose
the network of interfaces according to its topological features, i.e., into smooth two-phase
interfaces and triple junctions. Suppose that the network has P of such topological features
Tn, n ∈ {1, ..., P}. We then split {1, ..., P} =: C ∪ P , where C enumerates the connected
components of the two-phase interfaces and P enumerates the triple junctions. In particular,
if p ∈ P , Tp is a triple junction, whereas if c ∈ C, Tc is a connected component of a two-phase
interface Ii,j for some distinct i, j ∈ {1, ..., N}.

In the following we use a suitable notion of neighborhood for a single connected component of
the network of interfaces provided by [46, Definition 21]. In particular, we adopt the notion
of localization radius, which allows to define the diffeomorphism corresponding to a single
connected component of a network as it follows. Let ri,j be a localization radius for the interface
Ii,j and let ni,j be the normal vector field to Ii,j pointing towards {χ̄j = 1} for some distinct
i, j ∈ {1, ..., N}. Then, the map Ψi,j : Ii,j × (−ri,j, ri,j) → R2, (x, s) ↦→ x+ sni,j(x) defines
a diffeomorphism, whose inverse can be splitted as follows Ψ−1

i,j : im(Ψi,j) ↦→ Ii,j × (−ri,j, ri,j),
x ↦→ (PIi,j

x, dist±(x, Ii,j)), where PIi,j
: im (Ψi,j) → Ii,j represent the projection onto the

nearest point on the interface Ii,j, whereas dist±(·, Ii,j) : im (Ψi,j) → (−ri,j, ri,j) a signed
distance function.

Similarly as in [46, Definition 24], we provide a notion of admissible localization radius for a
triple junction.

Definition 44. Let d = 2. Let χ̄ = (χ̄1, ..., χ̄N) be an initial partition of Rd with interfaces
∂{χ̄i = 1}, i = 1, ..., N . Let T be a triple junction present in the network of interfaces of χ̄,
which we assume for simplicity to be formed by the phases 1, 2 and 3. For each i ∈ {1, 2, 3},
denote by Ti,i+1 the connected component of Ii,i+1 with an endpoint at the triple junction T
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3. Sharp interface limit of the vectorial Allen-Cahn equation

and let ri,i+1 ∈ (0, 1] be an admissible localization radius for the interface Ii,i+1 in the sense
of [46, Definition 21]. We call a scale r = rT ∈ (0, r1,2 ∧ r2,3 ∧ r3,1] an admissible localization
radius for the triple junction T if there exists a wedge decomposition of the neighborhood
Br(T ) of the triple junction in the following sense:

For each i ∈ {1, 2, 3} there exist sets Wi,i+1 and Wi with the following properties:

First, the sets Wi,i+1 and Wi are non-empty subsets of Br(T ) with pairwise disjoint interior
such that ⋃︂

i∈{1,2,3}
Wi,i+1 ∪Wi = Br(T ) .

Second, each of these sets is represented by a cone with apex at the triple junction T
intersected with Br(T ). More precisely, there exist six pairwise distinct unit-length vectors(︂
X i
i,i+1, X

i+1
i,i+1

)︂
i∈{1,2,3}

such that for all i ∈ {1, 2, 3} we have

Wi,i+1 =
(︂
T +

{︂
aX i

i,i+1 + bX i+1
i,i+1 : a, b ∈ (0,∞)

}︂)︂
∩ Br(T )

Wi =
(︂
T +

{︂
aX i

i,i+1 + bX i
i−1,i : a, b ∈ (0,∞)

}︂)︂
∩Br(T ) .

The opening angles of these cones are numerically fixed by

X i
i,i+1 ·X i+1

i,i+1 = cos(π2 ) = 0 , X i
i,i+1 ·X i

i−1,i = cos(π6 ) .

Third, we require that for all i ∈ {1, 2, 3} it holds

Br(T ) ∩ Ti,i+1 ⊂ Wi,i+1 ∪ T ⊂ Hi,i+1

Wi ⊂ Hi,i+1 ∩ Hi,i−1

with the domains Hi,i+1 := {x ∈ R2 : x ∈ im (Ψi,i+1)} ∩ Br(T ), where Ψi,i+1 is the diffeo-
morphism defining the neighboorhood of Ii,i+1 in the sense of [46, Definition 21].

Let r := minp∈P rp, where rp admissible localization radius for the triple junction Tp. Let
ρ ∈ (0, r). Consider a triple junction T , which we assume for simplicity formed by the phases
1, 2 and 3. Let ε < ρ, then for all i ∈ {1, 2, 3} we define

(i) the two-dimensional regions

W ρ,+
i,i+1 := Wi,i+1 ∩ {x ∈ R2 : 0 ≤ dist±(x, Ti,i+1) ≤ ρ} ,

W ρ,−
i,i+1 := Wi,i+1 ∩ {x ∈ R2 : −ρ ≤ dist±(x, Ti,i+1) ≤ 0} ,

W ρ
i,i+1 := W ρ,+

i,i+1 ∪W ρ,−
i,i+1 ,

W ε,±
i,i+1 := W ρ,±

i,i+1 ∩ Bε(T ) ,
W ε
i,i+1 := W ε,+

i,i+1 ∪W ε,−
i,i+1 ,

satisfying the inclusions

Ti,i+1 ∩Br(T ) ⊂ W ρ
i,i+1 , Ti,i+1 ∩ Bε(T ) ⊂ W ε

i,i+1 ⊂ W ρ
i,i+1 ;
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Tk,i

Tj,k

T
Ti,j

Br(T )

Wi

Wi,j

Wj

Wj,k

Wk,i

Wk

ε

Tk,i

Tj,k

T Ti,j

W ρ,+
i,j

W ρ,−
i,j

W ε,+
i,j

W ε,−
i,j

ρ

r
W ρ
j

W ρ
i

W ε
j

W ε
i

T

Tk,i

Tj,k

Ti,j

R+
i,j

R−
j,k

R−
i,j

R+
k,i

Hε,+
i,j

Hε,−
i,j

Sεj

Sεi

Figure 3.2: Notation and geometry for the construction of well-prepared initial data at a triple
junction T (d = 2) formed by the phases i, j and k for mutually distinct i, j, k ∈ {1, ..., N}.
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3. Sharp interface limit of the vectorial Allen-Cahn equation

(ii) the one-dimensional segments resp. arcs

Ri
i,i+1 :=

(︂
T +

{︂
aX i

i,i+1 : a ∈ (0,∞)
}︂)︂

∩ ∂W ρ
i,i+1 ,

R+
i,i+1 := Ri+1

i,i+1, R−
i,i+1 := Ri

i,i+1 ,

Hε
i,i+1 := W ρ

i,i+1 ∩ ∂Bε(T ) ,
Hε,+
i,i+1 := Hε

i,i+1 ∩ {x ∈ R2 : 0 ≤ dist±(x, Ti,i+1) ≤ ρ} ,
Hε,−
i,i+1 := Hε

i,i+1 ∩ {x ∈ R2 : −ρ ≤ dist±(x, Ti,i+1) ≤ 0} ,

(iii) Sεi as the segment connecting Ri
i,i+1 ∩ ∂Bε(T ) to Ri

i,i−1 ∩ ∂Bε(T );

(iv) the two-dimensional triangular regions W ρ
i resp. W ε

i as the one with sides Ri
i,i+1 and

Ri
i,i−1 resp. the one delimitated by Sεi , Ri

i,i+1 and Ri
i,i−1, thus satisfying the inclusions

W ε
i ⊂ W ρ

i ⊂ Wi .

Furthermore, we introduce PR+
i,i+1

: W ρ
i ∪ (W ρ

i,i+1 ∩ {x ∈ Ψi,i+1(Ii,i+1 × [0, ρ))}) → R+
i,i+1,

PR−
i,i+1

: W ρ
i ∪ (W ρ

i,i+1 ∩ {x ∈ Ψi,i+1(Ii,i+1 × (−ρ, 0])}) → R−
i,i+1, PHε

i,i+1
: W ε

i,i+1 → Hε
i,i+1

and PSε
i

: W ε
i → Sεi as the orthogonal projections onto the nearest point on R+

i,i+1, R−
i,i+1,

Hε
i,i+1 and Sεi , respectively.

3.5.3 Construction of the initial datum
We construct the initial datum uε,0 := uε(·, 0) seperately in each two-dimensional region
identified by the geometry of the network as introduced above. Then, we show that in each of
these regions the initial relative energy estimate (3.32) holds true.

Neighborhood of a connected component of a two-phase interface. Let Ti,j be a
connected component of Ii,j with either one or two endpoints at a triple junction for some
distinct i, j ∈ {1, ..., N}. Let Pi,j ⊂ P enumerate the numbers of triple junctions as endpoints
of Ti,j. Then, we can define

Mi,j :=
(︄

{x ∈ R2 : −ρ ≤ dist±(x, Ti,j) ≤ ρ} \
⋃︂

p∈Pi,j

Br(Tp)
)︄

∪
(︄ ⋃︂
p∈Pi,j

(W ρ
i,j \W ε

i,j)
)︄
.

In the two-dimensional region Mi,j we define the initial datum uε,0 by means of the rescaled
one-dimensional equilibrium profile (3.33) as follows

uε,0(x) := θi,j(ε−1 dist±(x, Ti,j)) for any x ∈ Mi,j , (3.36)

whence we obtain

EMi,j
[uε|ξ](0)

:=
ˆ
Mi,j

1
2ε |(θi,j)′(ε−1 dist±(x, Ti,j))|2 + 1

ε
W (θi,j(ε−1 dist±(x, Ti,j)))

− 1
2ε(ξi,j · ni,j)(θi,j)′(ε−1 dist±(x, Ti,j)) · ∂uψi,j(θi,j(ε−1 dist±(x, Ti,j))) dx
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3.5. Construction of well-prepared initial data

≤
ˆ
Mi,j

1
2ε |(θi,j)′(ε−1 dist±(x, Ti,j))|2 + 1

ε
W (θi,j(ε−1 dist±(x, Ti,j)))

− 1
ε

|ξi,j|2
1
θ̄

±
i,j

2W (θi,j(ε−1 dist±(x, Ti,j))) dx

≤
ˆ
Mi,j

(1 − |ξi,j|2)
[︄

1
2ε |(θi,j)′(ε−1 dist±(x, Ti,j))|2 + 1

ε
W (θi,j(ε−1 dist±(x, Ti,j)))

]︄
dx.

Here, we used that ψk = 0 along γi,j for any k ∈ {1, ..., N}\{i, j} and that ∂uψi,j(γi,j)· γ
′
i,j

|γ′
i,j | =

2
√︂

2W (γi,j). Indeed, assumption (A4) implies ∂uψi,j(γi,j) · γ′
i,j ≤ 2

√︂
2W (γi,j)|γ′

i,j|, then (A3)
gives the equality sign by contradiction. Then, in the last step we added a zero and we used
|(θi,j)′(s)|2 ≤ 1

(θ̄±
i,j)2 2W (θi,j(s)). Note that 1 − |ξi,j|2 ≤ c dist2(·, Ti,j), and that W (θi,j(s))

has an exponential resp. a power-law decay of order 2q
q−2 for q = 2 resp. q > 2 as s approaches

the extrema of (−ρ, ρ), then it vanishes for s ∈ (−∞,−ρ] ∪ [ρ,∞). As a consequence, we
obtain EMi,j

[uε|ξ](0) ≤ Cε2 for some constant C > 0.

Pure-phase region. Let i ∈ {1, ..., N}. Let Pi ⊂ P enumerate the numbers of triple
junctions as endpoints of a connected component of an interface between the phase i and
any other one. We set uε,0 = αi in the pure-phase region {χ̄i = 1} \

(︂⋃︁
p∈Pi

Wi ∪⋃︁j:j ̸=i{x−
sni,j(x), x ∈ Ii,j , s ∈ [0, ρ)}

)︂
. Then |∇uε,0| = 0 and, having W (αi) = 0, the initial relative

entropy is equal to zero in the pure-phase region.

Triple junction wedge containing a connected component of a two-phase interface.
Given a triple junction T , let i, j ∈ {1, ..., N}, i ̸= j, be two of the three phases forming T
and let k ∈ {1, ..., N} \ {i, j} be the third one. The initial datum uε,0 in the corresponding
wedge W ε,±

i,j is given by interpolation via orthogonal projections PHε
i,j
, PIi,j

and PR±
i,j

, which
reads as

uε,0(x) =
dist(x, Ii,j) + dist(x,R±

i,j)
dist(x,Hε

i,j) + dist(x, Ii,j) + dist(x,R±
i,j)

uHε
i,j

(PHε
i,j
x)

+
dist(x,Hε

i,j) + dist(x,R±
i,j)

dist(x,Hε
i,j) + dist(x, Ii,j) + dist(x,R±

i,j)
uIi,j

(PIi,j
x)

+
dist(x,Hε

i,j) + dist(x, Ii,j)
dist(x,Hε

i,j) + dist(x, Ii,j) + dist(x,R±
i,j)

uRi,j
(PR±

i,j
x)

for any x ∈ W ε,±
i,j , where

uHε
i,j

(x) =
h±
i,j(x, T )
hε,±i,j

θi,j(±ε−1h̄
ε,±
i,j ) +

hε,±i,j − h±
i,j(x, T )

hε,±i,j
θi,j(0)

for any x along Hε
i,j ,

uIi,j
(x) = li,j(x, T )

lεi,j
θi,j(0) +

lεi,j − li,j(x, T )
lεi,j

ᾱ

for any x along Ii,j ,

uRi,j
(x) =

r±
i,j(x, T )
ε

θi,j(±ε−1h̄
ε,±
i,j ) +

ε− r±
i,j(x, T )
ε

ᾱ

for any x along R±
i,j ,
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where ᾱ = αi+αj+αk

3 , h̄ε,±i,j := dist±(Hε
i,j ∩R±

i,j, Ii,j), lεi,j resp. hε,±i,j is the length of Ii,j ∩Bε(T )
resp. ∂Bε(T ) ∩ W ε,±

i,j , whereas h±
i,j(·, T ), li,j(·, T ) resp. r±

i,j(·, T ) is the length of the path
along Hε,±

i,j , Ii,j resp. R±
i,j connecting to T . Since lεi,j and hε,±i,j are of order ε, then this

construction gives that |∇uε,0(x)| is of order 1/ε for any x ∈ W ε
i,j. Hence, being the area of

W ε
i,j of order ε2, we can deduce

EW ε
i,j

[uε|ξ](0) :=
ˆ
W ε

i,j

ε

2 |∇uε,0|2 + 1
ε
W (uε,0) +

N∑︂
ℓ=1

ξℓ · ∇(ψℓ ◦ uε,0) dx

≤
ˆ
W ε

i,j

ε

2 |∇uε,0|2 + C

ε
+ C|∇uε,0| dx ≤ Cε ,

for some constant C > 0 varying from line to line.

Triple junction wedge not containing any connected component of a two-phase
interface. Given a triple junction T , let i, j, k ∈ {1, ..., N} be three distinct phases forming
T . The initial datum uε,0 in the region W ε

j is given by interpolation via orthogonal projections
PSε

j
, PR−

j,k
and PR+

i,j
, which reads as

uε,0(x) =
dist(x,R−

j,k) + dist(x,R+
i,j)

dist(x, Sεj ) + dist(x,R−
j,k) + dist(x,R+

i,j)
uHε

i,j
(PSε

j
x)

+
dist(x, Sεj ) + dist(x,R+

i,j)
dist(x, Sεj ) + dist(x,R−

j,k) + dist(x,R+
i,j)

uR−
j,k

(PR−
j,k
x)

+
dist(x, Sεj ) + dist(x,R−

j,k)
dist(x, Sεj ) + dist(x,R−

j,k) + dist(x,R+
i,j)

uR+
i,j

(PR+
i,j
x) ,

for any x ∈ W ε
j , where

uSε
j
(x) = sj(x)

sεj
θi,j(ε−1h̄

ε

i,j) +
sεj − sj(x)

sεj
θj,k(−ε−1h̄

ε

j,k)

for any x along Sεj , (3.37)

uR−
j,k

(x) = rj,k(x, T )
ε

θj,k(−ε−1h̄
ε

j,k) + ε− rj,k(x, T )
ε

ᾱ

for any x along R−
j,k , (3.38)

uR+
i,j

(x) = ri,j(x, T )
ε

θi,j(ε−1h̄
ε

i,j) + ε− ri,j(x, T )
ε

ᾱ

for any x along R+
i,j , (3.39)

where h̄εi,j := dist(Hε
i,j ∩ R+

i,j, Ii,j), h̄
ε

j,k := dist(Hε
j,k ∩ R−

j,k, Ij,k), sεj is the lenght of the
segment Sεj , whereas sj resp. ri,j(·, T ) is the lenght of the path along Sεj resp. R+

i,j connecting
to R−

j,k resp. T . Since sεj is of order ε, we have that |∇uε,0(x)| is of order 1/ε for any
x ∈ W ε

j , whence as above we can deduce that EW ε
j
[uε|ξ](0) :=

´
W ε

j

ε
2 |∇uε,0|2 + 1

ε
W (uε,0) +∑︁N

ℓ=1 ξℓ · ∇(ψℓ ◦ uε,0) dx ≤ Cε, for some constant C > 0.

Interpolation between two rescaled one-dimensional equilibrium profiles. First, we
introduce for any x ∈ W ρ

j \W ε
j the set of coordinates (s, h), where h denotes the distance

from Sεj while s is such that ∇s · ∇h = 0 and s = 0 whenever x ∈ R−
j,k. Hence, h ∈ [0, r̃ε],
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where r̃ε := (r − ε) cos( π12) is fixed, and s ∈ [0, 2h̃ε sin( π12)], where h̃ε := (cos( π12))−1h+ ε.
The initial datum uε,0 in W ρ

j \W ε
j is given as follows

uε,0(x) = s

2h̃ε sin( π12)
θj,k(−ε−1 dist(P s

R−
j,k
x, Ij,k))

+
2h̃ε sin( π12) − s

2h̃ε sin( π12)
θi,j(ε−1 dist(P s

R+
i,j
x, Ii,j)) , (3.40)

for any x ∈ W ρ
j \W ε

j , where P s
R−

j,k

and P s
R+

i,j

projections along the s-axis onto R−
j,k and R+

i,j,
respectively. Hence, we compute

∂suε,0(x)

= 1
2h̃ε sin( π12)

(︃
θj,k(−ε−1 dist(P s

R−
j,k
x, Ij,k)) − θi,j(ε−1 dist(P s

R+
i,j
x, Ii,j))

)︃
,

and

∂huε,0(x)

= s

2h̃2
ε sin( π12) cos( π12)

(︃
θj,k(−ε−1 dist(P s

R−
j,k
x, Ik,j)) − θi,j(ε−1 dist(P s

R+
i,j
x, Ii,j))

)︃

− s

2εh̃ε sin( π12)
∂h dist(P s

R−
j,k
x, Ij,k)(θj,k)′(−ε−1 dist(P s

R−
j,k
x, Ij,k))

+
2h̃ε sin( π12) − s

2εh̃ε sin( π12)
∂h dist(P s

R+
i,j
x, Ii,j)(θi,j)′(ε−1 dist(P s

R+
i,j
x, Ii,j)) .

For the sake of brevity, we introduce the notation λ̃(x) := s
2h̃ε sin( π

12 ) ∈ [0, 1] for any x ∈
W ρ
j \ W ε

j . By adding zeros and using the Young inequality together with the fact that
s2 ≤ 4h̃2

ε sin2( π12), one can obtain

ε

2 |∇uε,0(x)|2 = ε

2 |∂suε,0(x)|2 + ε

2 |∂huε,0(x)|2

≤ C
ε

h̃
2
ε

|θj,k(−ε−1 dist(P s
R−

j,k
x, Ij,k)) − αj|2

+ C
ε

h̃
2
ε

|θi,j(ε−1 dist(P s
R+

i,j
x, Ii,j)) − αj|2

+ Cλ̃
2(x)1

ε
|(θj,k)′(−ε−1 dist(P s

R−
j,k
x, Ij,k))|2

+ C(1 − λ̃(x))2 1
ε

|(θi,j)′(ε−1 dist(P s
R+

i,j
x, Ii,j)|2 ,

for some constant C > 0. First, we consider
ˆ
W ρ

j \W ε
j

ε

h̃
2
ε

|θj,k(−ε−1 dist(P s
R−

j,k
x, Ij,k)) − αj|2 dx

= 2 sin( π12)
ˆ r̃ε

0

ε

h̃ε
|θj,k(−ε−1 dist(P s

R−
j,k
x, Ik,j)) − αj|2 dh

≤ C

ˆ r̃ε

0
|θj,k(−ε−1 dist(P s

R−
j,k
x, Ij,k)) − αj|2 dh

129



3. Sharp interface limit of the vectorial Allen-Cahn equation

≤ C

ˆ r̃ε

0

h

ε
|θj,k(ε−1 dist(P s

R−
j,k
x, Ij,k)) − αj||(θj,k)′(−ε−1 dist(P s

R−
j,k
x, Ij,k))| dh

≤ C

ˆ r̃ε

0

h

ε
|(θj,k)′(−ε−1 dist(P s

R−
j,k
x, Ij,k))| dh ,

where we integrated by parts and C > 0 is a suitable constant varying from line to line. Then,
we observe that dist(P s

R−
j,k

x, Ij,k) is a homogeneous and increasing function with respect to h.
On the other hand, we recall that |(θj,k)′(s)| has an exponential resp. a power-law decay of
order q

q−2 for q = 2 resp. q > 2 as s approaches the extrema of (−ρ, ρ), then it vanishes for
s ∈ (−∞,−ρ] ∪ [ρ,∞). As a consequence, we obtain

ˆ
W ρ

j \W ε
j

ε

h̃
2
ε

|θj,k(−ε−1 dist(P s
R−

j,k
x, Ij,k)) − αj|2 dx ≤ Cε ,

and analogously
ˆ
W ρ

j \W ε
j

ε

h̃
2
ε

|θi,j(ε−1 dist(P s
R+

i,j
x, Ii,j)) − αj|2 dx ≤ Cε .

Second, we have
ˆ
W ρ

j \W ε
j

λ̃
2(x)1

ε
|(θj,k)′(−ε−1 dist(P s

R−
j,k
x, Ij,k))|2 dx

= 2 sin( π12)
ˆ r̃ε

0
λ̃

2(x) h̃ε
ε

|(θj,k)′(−ε−1 dist(P s
R−

j,k
x, Ij,k))|2dh

≤ C

ˆ r̃ε

0

(︃
h

ε
+ 1

)︃
|(θj,k)′(−ε−1 dist(P s

R−
j,k
x, Ij,k))|2dh

≤ Cε ,

and analogously
ˆ
W ρ

j \W ε
j

(1 − λ̃(x))2 1
ε

|(θi,j)′(ε−1 dist(P s
R+

i,j
x, Ii,j))|2 dx ≤ Cε .

Observe that by adding zeros we can write

W (uε,0(x)) = λ̃(x)
(︃
W (uε,0(x)) −W (θj,k(−ε−1 dist(P s

R−
j,k
x, Ij,k)))

)︃
+ (1 − λ̃(x))

(︃
W (uε,0(x)) −W (θi,j(ε−1 dist(P s

R+
i,j
x, Ii,j)))

)︃
+ λ̃(x)W (θj,k(−ε−1 dist(P s

R−
j,k
x, Ij,k)))

+ (1 − λ̃(x))W (θi,j(ε−1 dist(P s
R+

i,j
x, Ii,j))) ,

where λ̃(x), 1 − λ̃(x) ∈ [0, 1] for any x ∈ W ρ
j \W ε

j . Since W is Lipschitz (see (A1) in Sec.
3.2), then by adding zeros we obtain⃓⃓⃓⃓1

ε
W (uε,0(x)) − 1

ε
W (θj,k(−ε−1 dist(P s

R−
j,k
x, Ij,k)))

⃓⃓⃓⃓
≤ C

ε
|uε,0(x) − θj,k(−ε−1 dist(P s

R−
j,k
x, Ij,k))|
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≤ C

ε
(1 − λ̃(x))

(︃
|θj,k(−ε−1 dist(P s

R−
j,k
x, Ij,k)) − αj| + |θi,j(ε−1 dist(P s

R+
i,j
x, Ii,j)) − αj|

)︃
and ⃓⃓⃓⃓1

ε
W (uε,0(x)) − 1

ε
W (θi,j(ε−1 dist(P s

R+
i,j
x, Ii,j)))

⃓⃓⃓⃓
≤ C

ε
|uε,0(x) − θi,j(ε−1 dist(P s

R+
i,j
x, Ii,j))|

≤ C

ε
λ̃(x)

(︃
|θj,k(−ε−1 dist(P s

R−
j,k
x, Ij,k)) − αj| + |θi,j(ε−1 dist(P s

R+
i,j
x, Ii,j)) − αj|

)︃
.

In particular, we haveˆ
W ρ

j \W ε
j

1
ε

|θj,k(−ε−1 dist(P s
R−

j,k
x, Ij,k)) − αj| dx

= 2 sin( π12)
ˆ r̃ε

0

h̃ε
ε

|θj,k(−ε−1 dist(P s
R−

j,k
x, Ik,j)) − αj| dh

≤ C

ˆ r̃ε

0

(cos( π12))−1h+ ε

ε
|θj,k(−ε−1 dist(P s

R−
j,k
x, Ij,k)) − αj| dh

≤ C

ˆ r̃ε

0

(︄
h2

ε2 + h

ε

)︄
|(θj,k)′(−ε−1 dist(P s

R−
j,k
x, Ij,k))| dh ,

where we integrated by parts and C > 0 is a suitable constant varying from line to line. Once
again since dist(P s

R−
j,k

x, Ij,k) is a homogeneous and increasing function with respect to h,
recalling the decay of |(θj,k)′(s)| in s mentioned above, then we get

ˆ
W ρ

j \W ε
j

1
ε

|θj,k(−ε−1 dist(P s
R−

j,k
x, Ij,k)) − αj| dx ≤ Cε ,

and also ˆ
W ρ

j \W ε
j

1
ε

|θi,j(ε−1 dist(P s
R+

i,j
x, Ii,j)) − αj| dx ≤ Cε .

Similarly, we estimateˆ
W ρ

j \W ε
j

1
ε
W (θj,k(ε−1 dist(P s

R−
j,k
x, Ij,k))) dx

≤ C

ˆ r̃ε

0

h̃ε
ε
W (θj,k(−ε−1 dist(P s

R−
j,k
x, Ij,k))) dh ≤ Cε ,

due to the fact that dist(P s
R−

j,k

x, Ij,k) is a homogeneous and increasing function with respect
to h and the decay of W (θj,k(s)) in s. Analogously, we have

ˆ
Mj

1
ε
W (θi,j(ε−1 dist(P s

R+
i,j
x, Ii,j))) dx ≤ Cε .

Finally, (3.9) together with (A4) (see Sec. 3.2) and an application of the Young inequality give⃓⃓⃓⃓
⃓⃓ N∑︂
ℓ=1

ˆ
W ρ

j \W ε
j

ξℓ · ∇(ψℓ ◦ uε,0) dx

⃓⃓⃓⃓
⃓⃓ ≤ C

ˆ
W ρ

j \W ε
j

√︂
2W (uε,0)|∇uε,0| dx
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αi αk

αj

T i
j T k

j

T i
k T k

i

T j
i T j

kγi,j γj,k

γk,i

Figure 3.3: Illustration of the disjoint partition {T i
j }i,j:i ̸=j of the simplex △2.

≤ C

⎡⎣ˆ
W ρ

j \W ε
j

ε

2 |∇uε,0|2 dx+
ˆ
W ρ

j \W ε
j

1
ε
W (uε,0) dx

⎤⎦ .
Then, from the estimates above we can conclude that

EW ρ
j \W ε

j
[uε|ξ](0) :=

ˆ
W ρ

j \W ε
j

ε

2 |∇uε,0|2 + 1
ε
W (uε,0) +

N∑︂
ℓ=1

ξℓ · ∇(ψℓ ◦ uε,0) dx ≤ Cε

for some constant C > 0.

3.6 Suitable multi-well potentials and a construction for
the ψi

We next proceed to show that the class of N -well potentials satisfying assumptions (A1)–(A4)
is in fact sufficiently broad.

3.6.1 A class of multi-well potentials
Let △N−1 be a (N − 1)-simplex with edges of unit length in RN−1. We denote by {γi,j}i,j:i ̸=j
its edges and by {αi}i its N vertices, so that |αi − αj| = 1 for any mutually distinct
i, j ∈ {1, ..., N}. We can decompose △N−1 (almost) symmetrically into a disjoint partition
{Ti,j}i,j:i<j such that each point x ∈ △N−1 is assigned to the set Ti,j if γi,j is the edge of
△N−1 that is closest to x, with x being assigned to the edge with the lowest i and j in case
of ties. Each Ti,j can be further split nearly symmetrically into T i

j and T j
i by defining T i

j

to consist of the points in Ti,j that are closer to αi than to αj. For an illustration of this
partition, we refer to Figure 3.3 for N = 3.
For the purpose of our construction of the ψi from condition (A4), we introduce some further
notation:

• For i ∈ {1, ..., N}, we denote by Ui := BrU (αi) a ball around the vertex αi with radius
rU ∈

(︂
0, 1

4

]︂
.
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αi αk

αj

γi,j γj,k

γk,i
βN

Figure 3.4: Illustration of the partition of the simplex △2 given by {Ui ∩ △2}i, {(Ni,j \ Ui) ∩
△2}i<j, and △2 \ Ni,j.

αi
βij(u)

Pi,juP rad,i
i,j u

u
T i
j

γi,j

Figure 3.5: Projections of u ∈ T i
j onto γi,j ⊂ △2.

• For i < j, i, j ∈ {1, ..., N}, we denote by Ni,j := {u ∈ RN−1 : dist(u, γi,j) ≤
rU sin(βN )} a neighborhood of the edge γi,j . Here, βN ∈ (0, π

12(N−2) ] is a fixed positive
angle.

For a depiction of the resulting partition in the case N = 3, we refer to Figure 3.4.

We furthermore make use of a couple of additional abbreviations.

• For any i < j, i, j ∈ {1, ..., N}, we denote by Pi,j : Ti,j → γi,j the standard orthogonal
projection onto γi,j, i. e. the projection onto the nearest point on γi,j.

• We denote by P rad,i
i,j : Ti,j → γi,j the radial projection onto γi,j with respect to αi, i.e.

P rad,i
i,j u denotes the point on γi,j with |P rad,i

i,j u− αi| = |u− αi|.

• For any u ∈ Ti,j, we denote by βij(u) the angle formed by u− αi and γi,j.

For an illustration of these notions, we refer to Figure 3.5 (again in the case N = 3).

Definition 45 (Strongly coercive N -well potential on the simplex). We call a function
W : △N−1 → [0,∞) a strongly coercive symmetric N -well potential on the simplex if it
satisfies the following list of properties:
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3. Sharp interface limit of the vectorial Allen-Cahn equation

1. The nonnegative function W ∈ C1,1(△N−1; [0,∞)) vanishes exactly in the N vertices
{α1, ..., αN} of the simplex △N−1. It furthermore has the same symmetry properties as
the simplex △N−1.

2. Given the geodesic distance

distW (v, w) := inf
{︃ ˆ 1

0

√︂
2W (γ(s))|γ′(s)| ds : γ ∈ C1([0, 1];R2)

with γ(0) = v, γ(1) = w
}︃
, (3.41)

the infimum for distW (αi, αj) is achieved by γi,j and distW (αi, αj) = 1 for any i, j ∈
{1, ..., N}, i ̸= j.

3. (Growth near the minima αi depending on the angle.) For any distinct i, j ∈ {1, ..., N}
and any u ∈ Ui ∩ Ti,j, we have the estimate

(1 + ω(βij(u)))W (P rad,i
i,j u) ≤ W (u), (3.42)

where ω : [0, π
6(N−2) ] → [0,∞) is a C1 increasing function such that

ω(β) = 0 for β = 0 , (3.43a)
ω (β) ≥ 0 for β ∈ (0, βN ), (3.43b)
ω (β) > Cω for β ∈ [βN ,

π
6(N−2) ], (3.43c)

where Cω > 0 is a suitable large constant depending on N and where βN ≤ π
12(N−2) .

4. (Growth properties of W and Lipschitz estimate for
√︂

2W (u) on the edges γi,j .) There
exist constants cγ, Cγ > 0 such that

cγ(u− αi)2(u− αj)2 ≤ W (u) ≤ Cγ(u− αi)2(u− αj)2, (3.44)

holds for all u ∈ γi,j and any distinct i, j ∈ {1, ..., N}. Furthermore, there exists a
constant Lγ > 0 such that for any u1, u2 ∈ γi,j

|
√︂

2W (u1) −
√︂

2W (u2)| ≤ Lγ|u1 − u2| . (3.45)

5. (Growth behavior as one leaves the shortest paths γi,j .) For any distinct i, j ∈ {1, ..., N}
and any u ∈ Ti,j ∩ (Ni,j \ (Ui ∪ Uj)), the lower bound

(1 + CN dist2(u, γi,j))W (Pi,ju) ≤ W (u) (3.46)

holds, where CN > 0 is a suitable large constant depending on rU , βN , Lγ, cγ.

6. (Lower bound away from the paths γi,j.) For any u ∈ △ \ (∪iUi ∪i<j Ni,j)

max
v∈∪i<jγi,j

W (v) ≤ 1
Cint

W (u) , (3.47)

where Cint > 0 is a suitable large constant depending on N, rU , βN , cγ, Cγ.
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3.6.2 Construction of the approximate phase indicator functions ψi

In this subsection we provide an ansatz for the set of functions ψi : △N−1 → [0, 1], 1 ≤ i ≤ N ,
in the case of a strongly coercive N -well potential on the simplex W : △N−1 → [0,∞). Recall
that the goal is to construct the ψi to satisfy condition (A4) (as introduced Section 3.2).
Since (ψ1 ◦ uε, ..., ψN ◦ uε) represents an approximation of the limit partition (χ̄1, ..., χ̄N ) and
since by assumption we have distW (αi, αj) = δij, our ansatz for ψi on the edges γi,j is

ψi(uε) :=

⎧⎨⎩1 − distW (αi, uε) along γi,j for j ∈ {1, ..., N} \ {i} ,
0 along γj,k for j, k ∈ {1, ..., N} \ {i} : j < k .

(3.48)

In the following we extend this definition of the set of functions ψi on the domain △N−1. In
order to do this, we introduce three interpolation and/or cutoff functions.

Lemma 46 (Interpolation functions). Let βN ∈ (0, π
12(N−2) ] and rU ∈ (0, 1

4 ]. The following
statements hold:

1. There exists a function λ : [0, π6 ] → [0, 1] of at least C1 regularity satisfying the properties
λ(β) = 0 and ∂βλ = 0 for all β ∈ [0, βN ], λ( π

6(N−2)) = 1, and

max
β∈
[︂

0, π
6(N−2)

]︂ |∂βλ| ≤ 4(N − 2) . (3.49)

2. There exists a function η : [0, 1] → [0, 1] of at least C1 regularity satisfying the properties:
η(s) = 1 for s ∈ [0, rU ], η(s) = 0 for s ∈ [1 − rU , 1], η(s) + η(1 − s) = 1 for all
s ∈ [0, 1], and

max
s∈[0,1]

|∂sη| ≤ 5
2 . (3.50)

We omit the proof of the lemma, as it is straightforward. We finally proceed to the construction
of the functions ψi from (A4) in the case of a strongly coercive N -well potential on the
simplex.

Construction 47. Let W : △N−1 → [0,∞) be a strongly coercive symmetric N -well
potential on the simplex in the sense of Definition 45. We define the associated set of
functions ψi : △ → [0, 1], 1 ≤ i ≤ N , as it follows. For i ∈ {1, ..., N}, we construct ψi on
the edge between αi and αj (j ∈ {1, ..., N} \ {i}) by

ψi(u) := 1 − distW (αi, u) for u ∈ γi,j. (3.51)

Let j ∈ {1, ..., N} \ {i}. For any u ∈ T i
j , we set

ψk(u) := 0 for any k ∈ {1, ..., N} \ {i, j}.

Furthermore, we define ψi and ψj on T i
j ∩ (Ni,j ∪ Ui) as follows:

• If u ∈ Ui ∩ T i
j , we set

ψi(u) := ψi(P rad,i
i,j u) , (3.52a)

ψj(u) := (1 − λ(βij(u)))ψj(P rad,i
i,j u) . (3.52b)
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• If u ∈ (Ni,j \ Ui) ∩ T i
j , we set

ψi(u) := η(|Pi,ju− αi|)ψi(P rad,i
i,j u) + η(|Pi,ju− αj|)ψi(P rad,j

i,j u) ,
ψj(u) := η(|Pi,ju− αi|)ψj(P rad,i

i,j u) + η(|Pi,ju− αj|)ψj(P rad,j
i,j u). (3.53a)

Finally, outside of the domain Mi := ⋃︁
j Uj ∪⋃︁j:j ̸=i Ni,j ∪⋃︁j,k:j,k ̸=i,j<k Tj,k on which we have

defined ψi so far, we define ψi as a suitable C1,1 extension:

• If u ∈ △N−1 \ Mi, we define

ψi(uε) := ψint
i (u) (3.54a)

where ψint
i : △N−1 → [0, 1] is a suitable C1,1 extension of ψi : Mi ∩ △N−1 → [0, 1]

that almost preserves the Lipschitz constant of ψi : Mi ∩ △N−1 → [0, 1].

3.6.3 Existence of a set of suitable approximate phase indicator
functions

Proof of Proposition 36. It directly follows from Construction 47 that the set of functions
ψi : △ → [0, 1], 1 ≤ i ≤ N , satisfy ψi = 1 at αi and ψi(u) < 1 for u ̸= αi.
We next show the validity of (A4) in a given set T i

j , which we further decompose into Ui ∩ T i
j

, (Ni,j \ Ui) ∩ T i
j , and T i

j \ (Ui ∪ Ni,j).

Step 1: Proof of (A4) in Ui ∩ T i
j . Let u ∈ Ui ∩ T i

j . Recall ψ0 := 1 − ∑︁N
ℓ=1 ψℓ. Due to

distW (αi, αj) = 1 and (3.51), it follows that ψi(P rad,i
i,j u) = 1 − ψj(P rad,i

i,j u). Thus, we have
ψ0(u) = λ(βij(u))ψj(P rad,i

i,j u). We also have ( αj−αi

|αj−αi| · ∇)ψi(P rad,i
i,j u) =

√︂
2W (P rad,i

i,j u). Using
(3.52), we can compute

∂uψi,j(u) = (2 − λ(βij(u)))
√︂

2W (P rad,i
i,j u)erad,i(u)

− ∂βλ(βij(u)) 1
|u− αi|

ψj(P rad,i
i,j u)eβi

j
(u) ,

∂uψ0(u) = λ(βij(u))
√︂

2W (P rad,i
i,j u)erad,i(u)

+ ∂βλ(βij(u)) 1
|u− αi|

ψj(P rad,i
i,j u)eβi

j
(u),

where erad,i(u), eβi
j
(u) are orthogonal vectors associated to the (N − 1)-dimensional spherical

coordinates pointing in the direction of steepest ascent of |u− αi| respectively βij(u); i. e. , in
particular we have erad,i(u) := u−αi

|u−αi| . For the sake of brevity, we omit the dependencies on
βij(u) in the following. Then, it follows that

|∂uψi,j(u)|2 ≤
(︂
(2 − λ)2 + |∂βλ|2

)︂
2W (P rad,i

i,j u) ,

|∂uψ0(u)|2 ≤
(︂
λ2 + |∂βλ|2

)︂
2W (P rad,i

i,j u) ,

|∂uψi,j(u) · ∂uψ0(u)| ≤
(︂
λ(2 − λ) + |∂βλ|2

)︂
2W (P rad,i

i,j u) .

For δ > 0 small enough, we have⃓⃓⃓
1
2∂uψi,j(u)

⃓⃓⃓2
+
(︂

5
4 + δ

)︂ ⃓⃓⃓
1
2∂uψ0(u)

⃓⃓⃓2
+ δ |∂uψi,j(u) · ∂uψ0(u)|
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≤
[︃

1
4(2 − λ)2 + 1

4 |∂βλ|2 + (5
4 + δ)1

4

(︂
λ2 + |∂βλ|2

)︂
+ δ

(︂
λ(2 − λ) + |∂βλ|2

)︂ ]︃
2W (P rad,i

i,j u)

≤
[︄
1 − λ+ 9

16λ
2 + 9

16 |∂βλ|2 + Cδ

]︄
2W (P rad,i

i,j u)

≤ (1 + ω(βij(u)))2W (P rad,i
i,j u)

≤ 2W (u) ,

where we used (3.49) and (3.43) together with the fact that δ can be chosen arbitrarly small.
Step 2: Proof of (A4) in u ∈ (Ni,j \ Ui) ∩ T i

j . Let u ∈ (Ni,j \ Ui) ∩ T i
j . First, note that

ψ0 = 1 − ψi − ψj ≡ 0 on (Ni,j \ Ui) ∩ T i
j . Using (3.53), we compute

∂uψi,j(u)

= η(|Pi,ju− αi|)2
√︂

2W (P rad,i
i,j u)erad,i(u) − η(|Pi,ju− αj|)2

√︂
2W (P rad,j

i,j u)erad,j(u)
+ ∂uη(|Pi,ju− αi|)

[︂
ψj(P rad,i

i,j u) − ψj(P rad,j
i,j u) + ψi(P rad,j

i,j u) − ψi(P rad,i
i,j u)

]︂
,

where erad,i(u) := u−αi

|u−αi| and erad,j(u) := u−αj

|u−αj | . Note that we have

|P rad,i
i,j u− αi| ≤ |Pi,ju− αi| + dist2(u, γi,j)

2|Pi,ju− αi|
, (3.55)

|P rad,i
i,j u− P rad,j

i,j u| ≤ dist2(u, γi,j)
2|Pi,ju− αi||Pi,ju− αj|

. (3.56)

As a consequence, we obtain

max{ψj(P rad,i
i,j u) − ψj(P rad,j

i,j u), ψi(P rad,j
i,j u) − ψi(P rad,i

i,j u)}

≤
√︂

2W (vu)
dist2(u, γi,j)

2|Pi,ju− αi||Pi,ju− αj|
,

where vu ∈ γi,j maximum of
√

2W on the segment connecting P rad,j
i,j u to P rad,i

i,j u. From
(3.50) and η(|Pi,ju− αi|) + η(|Pi,ju− αj|) = 1 it follows that

⃓⃓⃓
1
2∂uψi,j(u)

⃓⃓⃓2
≤
(︄

1 + 5
4|Pi,ju− αi||Pi,ju− αj|

dist2(u, γi,j)
)︄2

2W (vu) . (3.57)

Using that 1−|Pi,ju−αi| = |Pi,ju−αj| and |Pi,ju− αi|−1(1 − |Pi,ju− αi|)−1 ≤ r−1
U (1 − rU)−1,

one can obtain (︄
1 + 5

4|Pi,ju− αi||Pi,juε − αj|
dist2(u, γi,j)

)︄2

≤ 1 + C1 dist2(u, γi,j)

for C1 = 5
2rU (1−rU ) + 25 sin2(βN )

16(1−rU )2 since dist(u, γi,j) ≤ rU sin(βN ). On the other hand, first by
adding a zero and using (3.45), then noting that |vu − αi| ≤ |P rad,i

i,j u− αi| and using (3.56),
from (3.44) together with the fact that |Pi,ju− αi| ≥ 1

2 we can deduce

2W (vu) = 2W (Pi,ju)
⎛⎝1 +

√︂
2W (vu) −

√︂
2W (Pi,ju)√︂

2W (Pi,ju)

⎞⎠2
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≤ 2W (Pi,ju)
⎛⎝1 + Lγ

2|Pi,ju− αi|
√︂

2W (Pi,ju)
dist2(u, γi,j)

⎞⎠2

≤ 2W (Pi,ju)
(︄

1 + Lγ√2cγ
tan2(βij(u))

)︄2

≤ 2W (Pi,ju)
(︂
1 + C2 tan2(βij(u))

)︂
,

where C2 = 2 Lγ√
2cγ

+ tan2(βN ) L
2
γ

2cγ
. Moreover, one can compute

(︂
1 + C1 dist2(u,γi,j)

)︂ (︂
1 + C2 tan2(βij(u))

)︂
≤ 1 + C1 dist2(u, γi,j) + C2

r2
U cos2 βN

dist2(u, γi,j) + C1C2 tan2(βN ) dist2(u, γi,j)

≤ 1 + CN dist2(u, γi,j)

for CN = C1 + C2
r2

U cos2 βN
+ C1C2 tan2(βN ). Using our assumption (3.46), we can conclude

from (3.57) and the preceding three estimates that
⃓⃓⃓

1
2∂uψi,j(u)

⃓⃓⃓2
≤
(︂
1 + CN dist2(u, γi,j)

)︂
2W (Pi,ju)

≤ 2W (u) .

Step 3: Proof of (A4) in u ∈ T i
j \ Mi. Let u ∈ T i

j \ Mi. By (3.54) we have

ψi,j(uε) = ψint
j (u) − ψint

i (u) ,
ψ0(uε) = 1 − ψint

i (u) − ψint
j (u) ,

where ψint
ℓ , ℓ ∈ {i, j}, is a C1,1 extension of ψℓ from Mℓ∩△N−1 to △N−1 that approximately

preserves the Lipschitz constant Lint,ℓ > 0. Thus, we have

|∂uψi,j| ≤ (1 + δ)(Lint,i + Lint,j) , and similarly |∂uψ0| ≤ (1 + δ)(Lint,i + Lint,j) ,

where δ > 0 arbitrary small constant. It is not too difficult to derive an estimate on the
Lipschitz constants Lint,i and Lint,j in terms of maxw∈∪ℓ,m:ℓ<mγℓ,m

2W (w). To this aim, we
first estimate

|ψi(u)| ≤ max
w∈γi,m

√︂
2W (w)rU for u ∈ γi,m ∩ Um and m ̸= i,

|ψi(P rad,i
i,m u) − ψℓ(P rad,m

i,m u)| ≤ max
w∈γi,m

√︂
2W (w)|P rad,i

i,m u− P rad,m
i,m u|

(3.56)
≤ max

w∈γi,m

√︂
2W (w) rU

2(1 − rU) sin2(βN ) for u ∈ Ni,m and m ̸= i.

Using these estimates, the definitions (3.52)-(3.53), and the bounds (3.49) and (3.50), we
obtain

|∂uψi(u)| ≤ max
w∈γi,j

√︂
2W (w) for u ∈ Ui ,

|∂uψi(u)| ≤
(︂
1 + 4(N − 2)rU

)︂
max
w∈γi,m

√︂
2W (w) for u ∈ Um,m ̸= i ,
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|∂uψi(u)| ≤
(︃

1 + 5rU

4(1 − rU) sin2(βN )
)︃

max
w∈γi,m

√︂
2W (w) for u ∈ Ni,m, m ̸= i.

Furthermore, we have |∂uψi(u)| = 0 in △N−1 ∩ (∪m<n:m ̸=i,n ̸=iTm,n). Defining

M := max
{︄

1, 1 + 4(N − 2)rU , 1 + 5rU

4(1 − rU) sin2(βN )
}︄

= 1 + 4(N − 2)rU ,

this yields by (3.47) for u ∈ Mi ∩ △N−1

|∂uψi(u)| ≤ M max
w∈
⋃︁

ℓ,m:ℓ<m
γℓ,m

√︂
2W (w) =: MW

for any u ∈ △N−1 ∩ Mi. In order to estimate the Lipschitz constant Lint,i of ψi|Mi∩△N−1 ,
one has to address the issue of nonconvexity of Mi. It is not too difficult to see (but rather
technical to prove) that for any pair of points u, v ∈ Mi there exists a connecting path γ̃ in
Mi with len(γ̃) ≤ CM|u− v|. This shows Lint,i ≤ CMMW . Having an upper bound for Lint,i,
using the fact that our extension of ψℓ to △N−1 \ Mi approximately preserves the Lipschitz
constant, and choosing Cint >

9
4C

2
MM2 in (3.47), we can compute for u ∈ T i

j \ Mi⃓⃓⃓
1
2∂uψi,j(u)

⃓⃓⃓2
+
(︂

5
4 + δ

)︂ ⃓⃓⃓
1
2∂uψ0(u)

⃓⃓⃓2
+ δ |∂uψi,j(u) · ∂uψ0(u)|

≤ (1 + δ)2
(︂
1 + 5

4 + 5δ
)︂

max
m

L2
int,m ≤ 2W (u).

Here, we have used the fact that δ > 0 can be chosen arbitrarily small.

3.7 Additional length condition for the gradient flow
calibration

In this last section we justify the validity of the condition (3.4i) for the gradient flow calibration
constructed in [46] (cf. Definition 34). To this aim, first we show that (3.4i) holds on the
network of interfaces, then we motivate the extension of the property (3.4i) to Rd.
The global gradient flow calibration for a network is obtained by gluing together suitable local
constructions at each topological feature, i.e., a two phase interface or a triple junction (for
more details see [46]). More precisely, a partition of unity is defined in order to localize around
each topological feature, and then the global vector fields are defined by gluing together locally
constructed vector fields. In the following, we denote by ξIij

i,j resp. ξTijk

ℓ the local construction
of the gradient flow calibration in a neighborhood of a single connected component of Iij resp.
of the triple junction Ti,j,k (cf. [46, Sec. 5-6]).
As a starting point, we recall some useful properties of the gradient flow calibration. For any
distinct i, j ∈ {1, ..., N}, we have

ξi,j = ξ
Iij

i,j = ξ
Iij

i − ξ
Iij

j = ni,j, ξ
Iij

i = 1
2ξ

Iij

i,j ,

and ξk = ξ
Iij

k coincides with the null vector for any k ∈ {1, ..., N} \ {i, j} on Ii,j outside of a
neighborhood of the triple junctions where Ii,j ends. Let Ti,j,k be the triple junction where the
phases i, j and k meet, for mutually distinct i, j, k ∈ {1, ..., N}. Then, at the triple junction
Ti,j,k

ξℓ = ξ
Tijk

ℓ , |ξℓ| = 1√
3 , ξℓ · ξm = −1

6 for any distinct ℓ,m ∈ {i, j, k},
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and ξℓ = ξ
Tijk

ℓ coincides with the null vector for any ℓ ∈ {1, ..., N} \ {i, j, k}.

Let i, j ∈ {1, ..., N} such that i ̸= j. If we restrict to the network of interfaces, the vector field
ξi,j is nonzero only on each connected component of Ii,j , Ii,k, Ij,k for any k ∈ {1, ..., N}\{i, j}
and at the triple junctions where either the phase i or j meets other phases. Using the properties
of the gradient flow calibration listed above, one can easily see that (3.4i) is satisfied at each
point belonging to a connected component of Ii,j, Ii,k or Ij,k and outside of a neighborhood
of the triple junctions where it ends, as well as at the triple junctions where either the phase i
or j meets other phases. As a consequence, in order to conclude about (3.4i) on the network
of interface, we only need to check its validity in a neighborhood of triple junctions where
either the phase i or j meets other phases. In particular, it suffices to consider a neighborhood
of Ti,j,k and a neighborhood of Ti,k,k′ for some distinct k, k′ ∈ {1, ..., N} \ {i, j}.

In a neighborhood of Ti,j,k, one can write

ξi,j = ηξ
Tijk

i,j + (1 − η)ξIij

i,j , ξk = ηξ
Tijk

k along Ii,j,
ξi,j = ηξ

Tijk

i,j + (1 − η)ξIik
i,j , ξk = ηξ

Tijk

k + (1 − η)ξIik
k along Ii,k,

where η : Rd → [0, 1] is a cut-off fuction decreasing quadratically with the distance from
Ti,j,k and vanishing outside of a neighborhood of Ti,j,k. Note that ξTijk

i,j = ξ
Iij

i,j along Ii,j in a
neighborhood of Ti,j,k. It follows that |ξi,j|2 = 1 and ξi,j · ξk = 0 for k ∈ {1, ..., N} \ {i, j}
(cf. [46, Sec. 7.2]), hence (3.4i) holds along Ii,j in a neighborhood of Ti,j,k. As a next step,
we compute |ξi,j|2 and |

√
3ξi,j · ξk|2 for k ∈ {1, ..., N} \ {i, j}, and then show that (3.4i) with

δcal = 0 holds along Ii,k in a neighborhood of Ti,j,k. Since ξIik
i,j = ξIik

i = 1
2ξ

Iik
i,k = 1

2ξ
Tijk

i,k and
ξIik
k = −1

2ξ
Iik
i,k = −1

2ξ
Tijk

i,k along Ii,k in a neighborhood of Ti,j,k, then one can deduce

|ξi,j|2 = η2|ξTijk

i,j |2 + (1 − η)2|1
2ξ

Tijk

i,k |2 + η(1 − η)ξTijk

i,j · ξTijk

i,k

= η2 + (1 − η)2 1
4 + η(1 − η)1

2 ,

ξi,j · ξk = −1
2η(1 − η)ξTijk

i,j · ξTijk

i,k + 1
2η(1 − η)ξTijk

i,k · ξTijk

k − 1
4(1 − η)2|ξTijk

i,k |2

= −1
2η(1 − η) − 1

4(1 − η)2,

where we used ξTijk

i,j · ξTijk

k = 0 in a neighborhood of Ti,j,k (for more details see [46, Sec. 7.2]).
As a consequence, one can see that

|ξi,j|2 + 4|
√

3ξi,j · ξk|2 ≤ 1,

thus (3.4i) with δcal = 0 is satisfied along Ii,k in a neighborhood of Ti,j,k.

As a next step, we consider a neighborhood of Ti,k,k′ , where we can write

ξi,j = η̃ξ
Tikk′
i,j + (1 − η̃)ξIik

i,j , ξk = η̃ξ
Tikk′
k + (1 − η̃)ξIik

k , ξk′ = η̃ξ
Tikk′
k′ along Ii,k,

ξi,j = η̃ξ
Tikk′
i,j , ξk = η̃ξ

Tikk′
k + (1 − η̃)ξIkk′

k , ξk′ = η̃ξ
Tikk′
k′ + (1 − η̃)ξIkk′

k′ along Ik,k′ ,

where η̃ : Rd → [0, 1] denotes a cut-off fuction decreasing quadratically with the distance from
Ti,k,k′ and vanishing outside of the neighborhood of Ti,k,k′ . Moreover, we have ξIik

i,j = ξIik
i =

1
2ξ

Iik
i,k = 1

2ξ
Tikk′
i,k and ξIik

k = −1
2ξ

Iik
i,k = −1

2ξ
Tikk′
i,k along Ii,k, as well as ξIkk′

k = 1
2ξ

Ikk′
k,k′ = 1

2ξ
Tikk′
k,k′

and ξ
Ikk′
k′ = −1

2ξ
Ikk′
k,k′ = −1

2ξ
Tikk′
k,k′ along Ik,k′ . Proceeding as above (cf. [46, Sec. 7.2]), one

can compute |ξi,j|2 and |
√

3ξi,j · ξk|2 for k ∈ {1, ..., N} \ {i, j}, and then show that (3.4i)
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holds along both Ii,k′ and Ik,k′ in a neighborhood of Ti,k,k′ . In particular, observe that on the
network (3.4i) is satisfied with δcal = 0.
Finally, observe that the gradient flow calibration satisfies first order compatibility conditions at
any triple junction (cf. [46]). As a consequence, the property (3.4i) can be extended to Rd up
to errors of second order in the distance with respect to the network. Hence, if one additionally
truncates the gradient flow calibration constructed in [46] by means of an additional cut-off
function decreasing quadratically with the distance from the network, then the condition (3.4i)
follows for an arbitrarily small δcal > 0.
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CHAPTER 4
Weak-strong stability for planar

multiphase mean curvature flow beyond
a circular topology change

This chapter contains a preliminary version of the paper “Stability of planar multiphase mean
curvature flow beyond a circular topology change”[47], which is a work in progress together
with Julian Fischer, Sebastian Hensel and Maximilian Moser.
Abstract. The evolution of a network of interfaces by mean curvature flow features the
occurrence of topology changes and geometric singularities. As a consequence, classical
solution concepts for mean curvature flow are in general limited to a finite time horizon. At
the same time, the evolution beyond topology changes can be described only in the framework
of weak solution concepts (e.g., Brakke solutions), whose uniqueness may fail.
Following the relative energy approach à la Fischer-Hensel-Laux-Simon [46], we prove a a
weak-strong stability result beyond the singular time of a circular topology change: Any weak
(i.e., BV) solution of planar multiphase mean curvature flow starting sufficiently close to a
smooth, closed and simple curve evolving by mean curvature flow has to stay close to it for all
times. This implies a weak-strong uniqueness principle for BV solutions to planar multiphase
mean curvature flow beyond circular topology changes.
Previous weak-strong stability results of this form are limited to time horizons before the
first topology change of the strong solution [46]. The reason is that the time-dependent
constant in the associated relative energy inequality is non-integrable. We overcome this
issue by developing a weak-strong stability theory for circular topology change up to dynamic
space-time shift, which dynamically adapt the strong solution to the weak solution so that the
leading-order non-integrable contributions in the relative energy inequality are compensated.

4.1 Main result
Our main result on the weak-strong stability of BV solution to multiphase mean curvature
flow (MCF) reads as it follows.

Theorem 48 (Weak-strong stability up to shift for circular topology change). Let d = 2 and
P ≥ 2. Consider a global-in-time BV solution χ = (χ1, . . . , χP ) to multiphase MCF in the
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4. Stability of mean curvature flow beyond a circular topology change

sense of Definition 49. Consider also a smoothly evolving two-phase strong solution to MCF
χ̄ = (χ̄1, . . . , χ̄P ≡ 1−χ̄1) with extinction time Text =: 1

2r
2
0 > 0. Fix α ∈ (1, 5).

There exists δasymp ≪α
1
2 such that if for all t ∈ (0, Text) the interior of the phase

{χ̄1(·, t)=1} ⊂ R2 is δasymp-close to a circle with radius r(t) :=
√︂

2(Text−t) in the sense of
Definition 50, the evolution of χ̄ is unique and stable until the extinction time Text modulo
shift in the following sense:
There exists δ ≪ 1 as well as an error functional E[χ0|χ̄0] ∈ [0,∞) for the initial data of χ
and χ̄ such that if

E[χ0|χ̄0] < δr0, (4.1)

one may then choose

a time horizon tχ > 0,
a path of translations z ∈ W 1,∞((0, tχ);R2), and
a strictly increasing time reparametrization T ∈ W 1,∞((0, tχ); (0, Text))

with the properties (z(0), T (0)) = (0, 0),

tχ = sup{t : T (t) < Text}, (4.2)
1
r0

∥z∥L∞
t (0,tχ) ≤

√︄
1
r0
E[χ0|χ̄0], (4.3)

1
Text

∥T − id∥L∞
t (0,tχ) ≤

√︄
1
r0
E[χ0|χ̄0], (4.4)

such that for a.e. t ∈ (0, tχ) it holds

E[χ|χ̄z,T ](t) ≤ E[χ0|χ̄0]
(︃
rT (t)
r0

)︃α
(4.5)

where χ̄z,T (x, t) := χ̄(x−z(t), T (t)), (x, t) ∈ R2×[0, tχ), denotes the shifted strong solution,
rT (t) := r(T (t)) for t ∈ [0, tχ), and E[χ|χ̄z,T ](t) is an error functional satisfying

E[χ|χ̄z,T ](t) = 0 ⇐⇒ χ(·, t) = χ̄z,T (·, t) a.e. in R2. (4.6)

In particular, the BV solution χ goes extinct and the associated time horizon tχ provides an
upper bound for the extinction time.

Definition 49 (BV solution to multiphase MCF). Let d = 2 and P ≥ 2. A measurable map

χ = (χ1, . . . , χP ) : R2 × [0,∞) → {0, 1}P

(or the corresponding tuple of sets Ωi(t) := {χi(t) = 1} for i = 1, . . . , P ) is called a global-in-
time BV solution to multiphase MCF with initial data χ0 = (χ0,1, . . . , χ0,P ) : R2 → {0, 1}P
if the following conditions are satisfied:

i) For any TBV ∈ (0,∞), χ is a BV solution to multiphase MCF on [0, TBV) with initial
data χ0 in the sense of [46, Definition 13] (with trivial surface tension matrix σ =
diag(1, . . . , 1) ∈ RP×P ) such that
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i.a) (Partition with finite interface energy) For almost every T ∈ [0, TBV), χ(T ) is a
partition of Rd with the interface energy

E[χ] :=
P∑︂

i,j=1,i ̸=j

ˆ
Rd

1
2
(︂
d|∇χi| + d|∇χj| − d|∇(χi+χj)|

)︂
(4.7)

is finite and

ess sup
T∈[0,TBV)

E[χ(·, T )] = ess sup
T∈[0,TBV)

P∑︂
i,j=1,i ̸=j

ˆ
Ii,j(T )

1 dHd−1 < ∞, (4.8)

where Ii,j = ∂∗Ωi ∩ ∂∗Ωj for i ̸= j is the interface between Ωi and Ωj.
i.b) (Evolution equation) For all i ∈ {1, . . . , P}, there exist normal velocities Vi ∈

L2(Rd× [0, TBV), |∇χi|⊗L1) in the sense that each χi satisfies the evolution equation
ˆ
Rd

χi(·, T )φ(·, T ) dx−
ˆ
Rd

χ0,iφ(·, 0) dx

=
ˆ T

0

ˆ
Rd

Viφd|∇χi| dt+
ˆ T

0

ˆ
Rd

χi∂tφ dx dt (4.9)

for almost every T ∈ [0, TBV) and all φ ∈ C∞
cpt(Rd × [0, TBV]). Moreover, the

(reflection) symmetry condition Vi ∇χi

|∇χi| = Vj
∇χj

|∇χj | shall hold Hd−1-almost everywhere
on the interfaces Ii,j for i ̸= j.

i.c) (BV formulation of mean curvature) The normal velocities satisfy the equation
P∑︂

i,j=1,i ̸=j
σi,j

ˆ TBV

0

ˆ
Ii,j(t)

Vi
∇χi
|∇χi|

· B dHd−1 dt

=
P∑︂

i,j=1,i ̸=j
σi,j

ˆ TBV

0

ˆ
Ii,j(t)

(︄
Id − ∇χi

|∇χi|
⊗ ∇χi

|∇χi|

)︄
: ∇B dHd−1 dt (4.10)

for all B ∈ C∞
cpt(Rd × [0, TBV];Rd).

ii) For all [s, τ ] ⊂ [0,∞), the energy dissipation inequality

E[χ(·, τ)] +
ˆ τ

s

P∑︂
i,j=1,i ̸=j

ˆ
Ii,j(t)

1
2 |Vi,j|2 dH1dt ≤ E[χ(·, s)] (4.11)

holds true, and the energy t ↦→ E[χ(·, t)] := ∑︁P
i,j=1,i ̸=j

1
2H1(Ii,j(t)) is assumed to be

locally absolutely continuous. ♢

Definition 50 (Quantitative closeness to circle). Let A ⊂ R2 be a bounded, open and simply
connected set with C∞ boundary ∂A. Fix two constants δasymp ∈ (0, 1

2) and r > 0. We refer
to A as δasymp-close to a circle with radius r if there exists an arc-length parametrization
γ : [0, L) → R2 of ∂A such that 1

2r is a tubular neighborhood width of ∂A and

1
2πr |L− 2πr| ≤ δasymp, (4.12)

sup
θ∈[0,L)

⃓⃓⃓
n∂A

(︂
γ(θ)

)︂
− (−e2πi θ

L )
⃓⃓⃓
≤ δasymp, (4.13)
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sup
θ∈[0,L)

r

⃓⃓⃓⃓
H∂A

(︂
γ(θ)

)︂
− 1
r

⃓⃓⃓⃓
≤ δasymp, (4.14)

sup
θ∈[0,L)

r2
⃓⃓⃓
(∇tanH∂A)

(︂
γ(θ)

)︂⃓⃓⃓
≤ δasymp, (4.15)

where n∂A denotes the unit normal vector field along ∂A pointing inside A and H∂A :=
−∇tan · n∂A is the associated scalar mean curvature of ∂A. ♢

Remark 51. Consider a smoothly evolving two-phase solution to mean curvature flow χ̄ =
(χ̄1, . . . , χ̄P ≡ 1−χ̄1) with initial data χ̄0,1 = χA0 for some smooth, bounded, open and
simply connected initial set A0 ⊂ R2. By the Gage–Hamilton–Grayson theorem ([51],[55]),
the solution goes extinct at time Text = vol(A0)

π
, and for any given δasymp ∈ (0, 1), there

exists a time t0 = t0(A0, δasymp) such that for all t ∈ [t0, Text) it holds that the interior
of {χ̄1(·, t) = 1} is δasymp-close to a circle with radius r(t) :=

√︂
2(Text−t) in the sense of

Definition 50.
In particular, from some time onwards one is in the asymptotic regime close to the extinction
time for which the conclusions of Theorem 1 apply, at least if at time t0 = t0(A0, δasymp)
the assumption (4.1) on the smallness of the initial error is satisfied (i.e., with respect to
r(t0)). Based on the weak-strong stability estimate prior to topology changes from [46], this
requirement can be translated into a condition at the initial time t = 0: there exists a constant
µ0 = µ0(t0,A0) > 0 such that if E[χ0|χ̄0] < 1

µ0
δr0 then E[χ|χ̄](t0) < δr(t0).

In summary, for general initial data A0 as considered here, one first has, thanks to the main
result of [46], at least stability in the sense of d

dt
E[χ|χ̄](t) ≤ C(t)E[χ|χ̄](t) for times t ∈ (0, t0)

where C(t) ∼ (2(Text−t))−1 = r(t)−2. Then, if E[χ0|χ̄0] < 1
µ0
δr0 at time t0, in addition

the decay estimate (4.5) from Theorem 1 holds true for all times in the asymptotic regime
(t0, Text). ♢

Notation and some elementary differential geometry For the smoothly evolving χ̄,
we write nĪ(·, t) for the unit normal vector field of Ī(·, t) := ∂{χ̄1(·, t)=1} pointing inside
{χ̄1(·, t)=1}, and also define a tangent vector field through nĪ(·, t) = JτĪ(·, t) with J ∈ R2×2

being counter-clockwise rotation by 90◦, t ∈ (0, T ). Curvature is defined by HĪ(·, t) :=
−∇tan · nĪ(·, t) for t ∈ (0, Text). In particular, it holds

∇tannĪ = −HĪτĪ ⊗ τĪ , ∇tanτĪ = HĪnĪ ⊗ τĪ . (4.16)

Within the tubular neighborhood {x ∈ R2 : dist(x, Ī(t)) < r(t)/2}, the nearest-point pro-
jection onto ∂{χ̄(·, t)=1} is denoted by PĪ(·, t), whereas we write sdistĪ(·, t) for the signed
distance function, with orientation fixed through the requirement ∇ sdistĪ(·, t)|Ī = nĪ(·, t),
t ∈ (0, Text).
Given a map f : R2 × [0, Text) → Rm (or f : ⋃︁t∈[0,Text) Ī(t)×{t} → Rm), we will use the nota-
tion f z,T to refer to the space-time shifted function R2 × (0, tχ) ∋ (x, t) ↦→ f(x−z(t), T (t)) ∈
Rm (or in the other case ⋃︁t∈[0,tχ)(z(t)+Ī(T (t))×{t} ∋ (x, t) ↦→ f(x−z(t), T (t)) ∈ Rm) for
any data tχ ∈ (0,∞), z : (0, tχ) → R2 and T : [0, tχ) → [0, Text). The shifted geometry itself
will be abbreviated by Īz,T (t) := z(t) + Ī(T (t)), t ∈ (0, tχ), and analogously for an associated
arc-length parametrization γ̄(·, t) of Ī(·, t): γ̄z,T (·, t) := z(t) + γ̄(·, T (t)), t ∈ (0, tχ). Note
that

sdistz,T
Ī

(·, t) = sdist
Ī

z,T (·, t), (4.17)
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and thus as a direct consequence

nz,T
Ī

(·, t) = n
Ī

z,T (·, t). (4.18)

Indeed, the former simply follows from

sdistĪ(·, t) = dist
(︂
·,R2 \ {χ̄1(·, t)=1}

)︂
− dist

(︂
·, {χ̄1(·, t)=1}

)︂
.

Furthermore, within the tubular neighborhood {x ∈ R2 : dist(x−z(t), Ī(T (t))) < r(T (t))/2} =
{x ∈ R2 : dist(x, Īz,T (t)) < r(T (t))/2} it holds

P z,T

Ī
(·, t) = −z(t) + P

Ī
z,T (·, t). (4.19)

Finally, for the sake of shortness, we will denote d
dtf by ḟ .

4.2 Overview of the strategy
For the rest of the paper, fix a global-in-time BV solution χ = (χ1, . . . , χP ) to (planar)
multiphase MCF in the sense of Definition 49 as well as a smoothly evolving two-phase solution
to MCF χ̄ = (χ̄1, . . . , χ̄P ≡ 1−χ̄1) with extinction time Text =: 1

2r
2
0 > 0. We also assume

that for all t ∈ (0, Text) the interior of the phase {χ̄1(·, t)=1} ⊂ R2 is δasymp-close to a circle
with radius r(t) :=

√︂
2(Text−t) in the sense of Definition 50. Consistent with the claim of

Theorem 1, we will choose a suitable value of the constant δasymp in the course of the proof.

4.2.1 Heuristics: Leading-order behaviour near extinction time
The aim of this subsection is to compute the time evolution of our linearized error functional
in the simplified case of a centered self-similarly shrinking circle. As a result, our analysis
reveals the instability of our linearized error functional near the extinction time.
Consider a centered circle self-similarly shrinking by mean curvature flow: t ↦→ ∂Br(t) =
im γ̄(t) ⊂ R2, where γ̄(t) : [0, 2πr(t)) → ∂Br(t), θ ↦→ r(t)ei

θ
r(t) , is an arc-length parametriza-

tion of ∂Br(t). In particular, ṙ = −1
r

in the interval (0, 1
2r

2
0 = Text) for r0 := r(0) > 0, i.e.,

r(t) =
√︂

2(Text − t).
Apart from the shrinking circle, let us consider a second solution to mean curvature flow,
for which we in addition assume that it can be written as a smooth graph over the self-
similarly shrinking circle. More precisely, there exists a smooth time-dependent height function
h(·, t) : ∂Br(t) → R with |h(·, t)| ≪ r(t) and |h′(·, t)| ≪ 1 such that this second solution is
represented as the image of the curve

γh(·, t) :=
(︂
id + h(·, t)n∂Br(t)

)︂
◦ γ̄(·, t) on [0, 2πr(t)), (4.20)

where n∂Br(t) denotes the inward-pointing unit normal along ∂Br(t) and by slight abuse of
notation h′(·, t) := (τ∂Br(t) ·∇tan)h(·, t) for the choice of tangent vector field τ∂Br(t)

(︂
γ̄(θ, t)

)︂
=

iei
θ

r(t) . As we will show later, our error functional in this perturbative setting corresponds to
leading order to

Eh(t) :=
ˆ
∂Br(t)

1
2
h2(·, t)
r2(t) + 1

2(h′)2(·, t) dH1. (4.21)
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For the current purposes, we content ourselves with studying the stability of Eh(t) near the
extinction time.
To this end, we have to derive the PDE satisfied by the height function h (and its derivative).
Dropping from now on for ease of notation the time dependence of all involved quantities, we
first note that by definition in case of self-similarly shrinking circle

∂tγ̄ =
(︃1
r

n∂Br + λτ∂Br

)︃
◦ γ̄ on [0, 2πr), (4.22)

where λ denotes the tangential velocity. Second, we may then, on one side, directly compute
based on the definition (4.20)

∂tγh =
(︄(︃1

r
+ ∂th+ λh′

)︃
n∂Br

)︄
◦ γ̄ +

(︄
λ
(︃

1 − h

r

)︃
τ∂Br

)︄
◦ γ̄. (4.23)

On the other side, since γh is assumed to evolve by mean curvature flow, it holds

Hγh
= ∂tγh · nγh

on [0, 2πr), (4.24)

where the normal nγh
and mean curvature Hγh

of the curve γh are given by the elementary
formulas (with J denoting the counter-clockwise rotation by 90◦)

nγh
= J

∂θγh
|∂θγh|

=
(︄(︃1 − h

r

)︃
n∂Br − h′τ∂Br√︃(︂

1 − h
r

)︂2
+ (h′)2

)︄
◦ γ̄ (4.25)

and

Hγh
= ∂θθγh

|∂θγh|2
· nγh

=
(︄(︃1 − h

r

)︃(︃
1
r

+ h′′ − h
r2

)︃
+ 2 (h′)2

r√︃(︂
1 − h

r

)︂2
+ (h′)2

3

)︄
◦ γ̄. (4.26)

From (4.23)–(4.26), one may now deduce the non-linear PDE satisfied by the height function h.
However, because in what follows we are only interested in identifying the leading-order behavior,
we suppose from now on that the height function h instead satisfies the corresponding linearized
equation:

∂th = h′′ + h

r2 on ∂Br. (4.27)

From this, using (∂th)′ = ∂th
′ + h

r2 , we in particular deduce

∂th
′ = h′′′ + 2h

′

r2 . (4.28)

Indeed, this follows easily from (4.27) and exploiting the change of variables ˜︁h(θ) := h(reiθ)
as a useful computational device.
Recalling (4.21), we thus get from the transport theorem as well as (4.27)–(4.28)

d

dt
Eh =

ˆ
∂Br

∂t

(︄
1
2
h2

r2 + 1
2(h′)2

)︄
dH1 −

ˆ
∂Br

H2
∂Br

(︄
1
2
h2

r2 + 1
2(h′)2

)︄
dH1

=
ˆ
∂Br

h

r

(︃
2 h
r3 + h′′

r

)︃
dH1 +

ˆ
∂Br

h′
(︃
h′′′ + 2h

′

r2

)︃
dH1 (4.29)
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−
ˆ
∂Br

1
r2

(︄
1
2
h2

r2 + 1
2(h′)2

)︄
dH1.

Integrating by parts and collecting alike terms therefore yields

d

dt
Eh +

ˆ
∂Br

(h′′)2 dH1 =
ˆ
∂Br

3
2
h2

r4 + 1
2

(h′)2

r2 dH1. (4.30)

Fourier decomposing

[0, 2π) ∋ θ ↦→ ˜︁h(θ) = h(reiθ) = a0
1√
2π
χ[0,2π] +

∞∑︂
k=1

ak
cos(kθ)√

π
+ bk

sin(kθ)√
π

, (4.31)

where we also recall the formulas for the associated Fourier coefficients

a0 =
ˆ 2π

0

1√
2π
˜︁h(θ) dθ, ak =

ˆ 2π

0

˜︁h(θ)cos(kθ)√
π

dθ, bk =
ˆ 2π

0

sin(kθ)√
π

dθ,

then rearranges (4.30) as

d

dt
Eh + 1

r3

∞∑︂
k=1

k4
(︂
a2
k + b2

k

)︂
= 1
r3

3
2a

2
0 + 1

r3

∞∑︂
k=1

(︃3
2 + 1

2k
2
)︃(︂
a2
k + b2

k

)︂
.

(4.32)

Since k4 − 3
2 − 1

2k
2 > 0 for k ≥ 2, we infer that only the modes (a0, a1, b1) are unstable

near the extinction time (in the sense that these are precisely those inducing the borderline
non-integrable singularity r−2 in the Gronwall estimate of Eh).

4.2.2 Heuristics: Decay estimate
Geometrically, the unstable modes correspond to time dilations and spatial translations. The
basic idea of the present work is to correct these by dynamically adapting the smoothly evolving
strong solution. In the simplified context of a self-similarly shrinking circle, this works as
follows.
Consider th > 0 (to be interpreted as an upper bound for the perturbed solution) as well as
a smooth path z : (0, th) → R2 of translations together with a smooth time diffeomorphism
T : (0, th) → (0, 1

2r
2
0), the latter to be thought of as a perturbation of the identity: T (t) =:

t + T(t) for t ∈ (0, th). Based on this data, we then introduce the dynamically adapted
solution

γ̄z,T (θ, t) := γ̄(θ, T (t)) + z(t), θ ∈ [0, 2πrT (t)), t ∈ (0, th), (4.33)

where rT (t) := r(T (t)), and assume that the perturbed solution γh is given by

γh(·, t) =
(︂
id + h(·, t)n∂BrT (t)(z(t))

)︂
◦ γ̄z,T (·, t), t ∈ (0, th), (4.34)

where |h(·, t)| ≪ rT (t) and |h′(·, t)| ≪ 1. We are again interested in the stability properties of

Ez,T
h (t) :=

ˆ
∂BrT (t)(z(t))

1
2
h2(·, t)
r2(t) + 1

2(h′)2(·, t) dH1, t ∈ (0, th). (4.35)
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In fact, we actually aim to identify ODEs for z and T such that Ez,T
h satisfies a quantitative

decay estimate on (0, th). One of course already expects the ODE for T to involve the mode
a0, whereas the ODE for z is expected to be encoded in terms of (a1, b1). From now on, we
again make use of the notational convention of suppressing the time dependence of all involved
quantities. To this end, it will be convenient to associate to any map f(·, t) : ∂Br(t) → R its
time-rescaled version fT (·, t) : ∂BrT (t) → R defined by fT (·, t) := f(·, T (t)).
We start by computing the normal speed of ∂BrT

(z). By definition (4.33),

∂tγ̄
z,T = (∂tγ̄)T

(︂
1 + Ṫ

)︂
+ ż. (4.36)

Hence, the normal speed of ∂BrT
(z) in the direction of n∂BrT

(z) is given by

V∂BrT
(z) = 1

rT

(︂
1 + Ṫ

)︂
+ n∂BrT

(z) · ż. (4.37)

The tangential speed in the direction of τ∂BrT
(z) is furthermore given by

λ∂BrT
(z) = λT

(︂
1 + Ṫ

)︂
+ τ∂BrT

(z) · ż. (4.38)

In particular, we may now compute

∂tγh =
(︄(︃

V∂BrT
(z)+∂th+λ∂BrT

(z)h
′
)︃

n∂BrT
(z)

)︄
◦ γ̄z,T

+
(︄(︃

λ∂BrT
(z) − λT

(︂
1 + Ṫ

)︂ h
rT

)︃
τ∂BrT

(z)

)︄
◦ γ̄z,T .

(4.39)

Furthermore, the analogous versions of the formulas (4.25)–(4.26) hold true:

nγh
=
(︄(︃1 − h

rT

)︃
n∂BrT

(z) − h′τ∂BrT
(z)√︃(︂

1 − h
rT

)︂2
+ (h′)2

)︄
◦ γ̄z,T (4.40)

and

Hγh
=
(︄(︃1 − h

rT

)︃(︃
1
rT

+ h′′ − h
r2

T

)︃
+ 2 (h′)2

rT√︃(︂
1 − h

rT

)︂2
+ (h′)2

3

)︄
◦ γ̄z,T . (4.41)

Combining the information provided by (4.37)–(4.40), we deduce

∂tγh · nγh
=
(︃

1 − h

rT

)︃(︃
V∂BrT

(z)+∂th+λ∂BrT
(z)h

′
)︃

− h′
(︄(︃

1 − h

rT

)︃
λT
(︂
1 + Ṫ

)︂
+ τ∂BrT

(z) · ż
)︄

=
(︃

1 − h

rT

)︃(︃ 1
rT

(︂
1 + Ṫ

)︂
+ n∂BrT

(z) · ż + ∂th
)︃

− h

rT
h′τ∂BrT

(z) · ż.

Turning as above to the linearized PDE satisfied by the height function, we therefore obtain

∂th = h′′ + h

r2
T

− Ṫ

rT
− n∂BrT

(z) · ż (4.42)
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as well as

(∂th′) = h′′′ + (2 + Ṫ) h
′

r2
T

+ 1
rT
τ∂BrT

(z) · ż. (4.43)

We may now finally compute based on the transport theorem, the definition (4.35), and the
formulas (4.37) as well as (4.42)–(4.43)

d

dt
Ez,T
h =

ˆ
∂BrT

(z)
∂t

(︄
1
2
h2

r2
T

+ 1
2(h′)2

)︄
dH1

−
ˆ
∂BrT (z)

H∂BrT
(z)V∂BrT

(z)

(︄
1
2
h2

r2
T

+ 1
2(h′)2

)︄
dH1

=
ˆ
∂BrT

(z)

h

rT

(︄
1+Ṫ

r3
T

h+ 1
rT

(︃
h′′ + h

r2
T

− Ṫ

rT
− n∂BrT

(z) · ż
)︃)︄

dH1

+
ˆ
∂BrT

(z)
h′
(︃
h′′′ + (2 + Ṫ) h

′

r2
T

+ 1
rT
τ∂BrT

(z) · ż
)︃
dH1

−
ˆ
∂BrT (z)

1
r2
T

(︄
1
2
h2

r2
T

+ 1
2(h′)2

)︄
dH1

−
ˆ
∂BrT (z)

H∂BrT
(z)
(︂
V∂BrT

(z) −H∂BrT
(z)
)︂(︄1

2
h2

r2
T

+ 1
2(h′)2

)︄
dH1.

Hence, integrating by parts and collecting again alike terms yields

d

dt
Ez,T
h =

ˆ
∂BrT

(z)

3
2
h2

r4
T

dH1 −
ˆ
∂BrT

(z)

h

r3
T

Ṫ dH1 (4.44)

+
ˆ
∂BrT

(z)

1
2

(h′)2

r2
T

dH1 −
ˆ
∂BrT

(z)
2 h
r2
T

n∂BrT
(z) · ż dH1

−
ˆ
∂BrT

(z)
(h′′)2 dH1

+Rh.o.t.,

where

Rh.o.t. :=
ˆ
∂BrT

(z)

1
rT

(︃
Ṫ

rT
− n∂BrT

(z) · ż
)︃(︄1

2
h2

r2
T

+ 1
2(h′)2

)︄
dH1. (4.45)

Based on the Fourier decomposition (4.31), the identity (4.44) now motivates to define

Ṫ = cT
rT

−
ˆ 2π

0

˜︁h dθ, ż = cz
r2
T

−
ˆ 2π

0

˜︁h(−eiθ) dθ, (4.46)

where the constants (cT , cz) are yet to be chosen. Indeed, with these choices we get

d

dt
Ez,T
h + (cT−3/2)

r2
T

a2
0
rT

+ (cz−1)
r2
T

a2
1 + b2

1
rT

+ 1
r2
T

∞∑︂
k=2

(︃
k4−3

2−1
2k

2
)︃
a2
k + b2

k

rT
= Rh.o.t.,

(4.47)
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where, due to |Ṫ| ≤ cT
1
rT

∥h∥L∞(∂BrT
(z)) and |ż| ≤ cz

1
r2

T
∥h∥L∞(∂BrT

(z)), one has an estimate
for the remainder term in the form of⃓⃓⃓⃓

Rh.o.t.

⃓⃓⃓⃓
≤
(︃
cT+cz

)︃∥h∥L∞(∂BrT
(z))

rT

1
r3
T

(︃1
2a

2
0 +

∞∑︂
k=1

1
2(1+k2)(a2

k + b2
k)
)︃
. (4.48)

Hence, for given δ ∈ (0, 1), if |h| ≪δ,cT ,cz rT , one gets an upgrade of (4.44) in the form of

d

dt
Ez,T
h + cT−3/2(1+δ)

r2
T

a2
0
rT

+ cz−1(1+δ)
r2
T

a2
1 + b2

1
rT

+ 1
r2
T

∞∑︂
k=2

(︄
k4−(1+δ)

(︃3
2+1

2k
2
)︃)︄

a2
k + b2

k

rT
≤ 0.

(4.49)

Because of

Ez,T
h = 1

2
a2

0
rT

+
∞∑︂
k=1

1
2(1+k2)a

2
k + b2

k

rT
, (4.50)

we deduce that for any constant α > 1 satisfying

α ≤ min{2cT − 3(1+δ), cz − 1(1+δ)}, (4.51)

α
1
2(1+k2) ≤ k4−(1+δ)

(︃3
2+1

2k
2
)︃
, k ≥ 2, (4.52)

it holds
d

dt
Ez,T
h + α

r2
T

Ez,T
h ≤ 0. (4.53)

Choosing cT := 4 and cz := 6, optimizing shows that for any desired exponent α ∈ (1, 5)
there exists a choice of the constant δ such that (4.53) holds true (in the perturbative
regime |h| ≪cT ,cz ,δ 1 with linearized evolution law (4.42)). Indeed, the function f : [2,∞) →
[0,∞), x ↦→

(︂
1
2(1+x2)

)︂−1(︂
x4 − (3

2+1
2x

2)
)︂

is monotonically increasing and satisfies f(2) = 5.
Since d

dt
rαT = −αrα−1

T
1
rT

= −(1+Ṫ) α
r2

T
rαT and |Ṫ| ≤ cT

1
rT

∥h∥L∞(∂BrT
(z)), one may choose for

any α ∈ (1, 5) the constant δ such that

Ez,T
h (t) ≤ Ez,T

h (0)
(︃
rT (t)
r0

)︃α
, t ∈ (0, th). (4.54)

This is precisely the type of decay estimate (or, weak-strong stability estimate up to shift)
claimed in our main result, Theorem 1.
Before we turn in the upcoming subsections to a description of the key ingredients and steps
for our proof of Theorem 48 (with the above considerations, of course, being their main
motivation), let us provide some final remarks on the main assumptions behind the derivation
of the decay estimate (4.54).
First, one may derive a version of (4.44) also in the case where the time-evolving curve γ̄ is
not parametrizing a perfect circle. The main difference in this case is that the coefficients
are not anymore simply constant along γ̄ (i.e., not proportional to inverse powers of rT ). It
is precisely at this stage where we exploit our notion of quantitative closeness of the strong
solution to a circular solution, cf. Definition 50, allowing us to effectively reduce the situation
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to the constant-coefficient computation (4.44) (i.e., in PDE jargon, we perform nothing else
than a global freezing of coefficients).
A second simplifying assumption was the usage of the linearized evolution law (4.42) for
the height function h as well as that we only considered the stability of the leading order
contribution Eh to our actual error functional. It will turn out that these linearization errors
are harmless and only impact the final stability estimate qualitatively in the same manner as
the term Rh.o.t. from (4.44).
Needless to say, in the general setting of Theorem 48 where we aim for quantitative stability
beyond circular topology change even for the broader class of weak (i.e., here BV ) solutions, we
can not rely on the above considerations (e.g., transport theorem, derivation of the (linearized)
evolution law (4.42)) in order to rigorously derive the evolution of the error functional. In
order to still unravel the structure of the right hand side of (4.44), we instead make use of the
recently introduced notions of gradient flow calibrations and relative entropies for multiphase
mean curvature flow from [46], serving as a robust replacement of the above considerations to
the weak setting.
Last but not least, one of course also needs an independent argument ensuring that one can
reduce the whole estimation strategy to a perturbative graph setting as above. This, however,
is precisely one of the key points of the upcoming subsections.

4.2.3 A general stability estimate for multiphase MCF
Starting point of our strategy is a stability estimate which one may essentially directly infer
from the combination of [46, Proposition 17] and [46, Lemma 20] (or more precisely, their
proofs).

Lemma 52 (Preliminary stability estimate). Let ((ξi)i=1,...,P , (ϑi)i=1,...,P−1, B)—to be thought
of as being constructed from χ̄—such that

ξi ∈ W 1,∞
loc

(︂
[0, Text);W 1,∞(R2;R2)

)︂
∩ L∞

loc

(︂
[0, Text);W 2,∞(R2;R2)

)︂
,

ϑi ∈ W 1,1
loc

(︂
[0, Text);L1(R2)

)︂
∩ L1

loc

(︂
[0, Text); (W 1,1∩W 1,∞)(R2)

)︂
,

B ∈ L∞
loc

(︂
[0, Text);W 2,∞(R2;R2)

)︂
,

where (ϑi)i=1,...,P−1 is supposed to satisfy, for all t ∈ (0, Text),

ϑ1(·, t) < 0 in the interior of {χ̄1(·, t) = 1},
ϑ1(·, t) > 0 in the exterior of {χ̄1(·, t) = 1},
ϑi(·, t) = 1 throughout R2 for i ̸= 1.

Consider in addition data (tχ, z, T ) such that tχ ∈ (0,∞), z ∈ W 1,∞
loc ((0, tχ);R2) and

T ∈ W 1,∞
loc ((0, tχ); (0, Text)), and define for all t ∈ (0, tχ)

Eint[χ|χ̄z,T ](t) :=
P∑︂

i,j=1,i ̸=j

1
2

ˆ
Ii,j(t)

1 − ni,j(·, t) · ξz,Ti,j (·, t) dH1, (4.55)

Ebulk[χ|χ̄z,T ](t) :=
P−1∑︂
i=1

ˆ
R2

|χi(·, t)−χ̄z,Ti (·, t)||ϑz,Ti (·, t)| dx, (4.56)

E[χ|χ̄z,T ](t) := Eint[χ|χ̄z,T ](t) + Ebulk[χ|χ̄z,T ](t). (4.57)
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where we also defined ξi,j := ξi − ξj for all distinct i, j ∈ {1, . . . , P}.
Then, for all [s, τ ] ⊂ [0, tχ), it holds

Eint[χ|χ̄z,T ](τ) +
ˆ τ

s

P∑︂
i,j=1,i ̸=j

1
2Di,j[χ|χ̄z,T ](t) dt

≤ Eint[χ|χ̄z,T ](s) +
ˆ τ

s

P∑︂
i,j=1,i ̸=j

1
2RHS

int
i,j [χ|χ̄z,T ](t) dt,

(4.58)

as well as

Ebulk[χ|χ̄z,T ](τ) = Ebulk[χ|χ̄z,T ](s) +
ˆ τ

s

P−1∑︂
i=1

RHSbulk
i [χ|χ̄z,T ](t) dt, (4.59)

where the individual terms are given by

Di,j[χ|χ̄z,T ](t) :=
ˆ
Ii,j(t)

1
2
⃓⃓⃓
Vi,j+∇ · ξz,Ti,j

⃓⃓⃓2
(·, t) dH1

+
ˆ
Ii,j(t)

1
2
⃓⃓⃓
Vi,jni,j−(Bz,T · ξz,Ti,j )ξz,Ti,j

⃓⃓⃓2
(·, t) dH1,

and

RHS int
i,j [χ|χ̄z,T ](t)

:= −
ˆ
Ii,j(t)

(︂
∂tξ

z,T
i,j +(Bz,T · ∇)ξz,Ti,j +(∇Bz,T )Tξz,Ti,j

)︂
(·, t) · (ni,j−ξz,Ti,j )(·, t) dH1

−
ˆ
Ii,j(t)

(︂
∂tξ

z,T
i,j +(Bz,T · ∇)ξz,Ti,j

)︂
(·, t) · ξz,Ti,j (·, t) dH1

+
ˆ
Ii,j(t)

1
2
⃓⃓⃓
∇ · ξz,Ti,j +Bz,T · ξz,Ti,j

⃓⃓⃓2
(·, t) dH1

−
ˆ
Ii,j(t)

1
2
⃓⃓⃓
Bz,T · ξz,Ti,j

⃓⃓⃓
(·, t)

(︂
1 − |ξz,Ti,j |2

)︂
(·, t) dH1

−
ˆ
Ii,j(t)

(1 − ni,j · ξz,Ti,j )(·, t)∇ · ξz,Ti,j (·, t)(Bz,T · ξz,Ti,j )(·, t) dH1

+
ˆ
Ii,j(t)

(︂
(Id−ξz,Ti,j ⊗ ξz,Ti,j )Bz,T

)︂
(·, t) ·

(︂
(Vi,j+∇ · ξz,Ti,j )ni,j

)︂
(·, t) dH1

+
ˆ
Ii,j(t)

(1 − ni,j · ξz,Ti,j )(·, t)∇ · Bz,T (·, t) dH1

−
ˆ
Ii,j(t)

(ni,j−ξz,Ti,j )(·, t) ⊗ (ni,j−ξz,Ti,j )(·, t) : ∇Bz,T (·, t) dH1,

as well as

RHSbulk
i [χ|χ̄z,T ](t)

:= −
P∑︂

j=1,j ̸=i

ˆ
Ii,j(t)

ϑz,Ti (·, t)(Bz,T · ξz,Ti,j −Vi,j)(·, t) dH1

−
P∑︂

j=1,j ̸=i

ˆ
Ii,j(t)

ϑz,Ti (·, t)Bz,T (·, t) · (ni,j − ξz,Ti,j )(·, t) dH1
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+
ˆ
R2

(χi−χ̄z,Ti )(·, t)ϑz,Ti (·, t)∇ · Bz,T (·, t) dx

+
ˆ
R2

(χi−χ̄z,Ti )(·, t)
(︂
∂tϑ

z,T
i +(Bz,T · ∇)ϑz,Ti

)︂
(·, t) dx.

The next two steps of our strategy are concerned with the construction of the input data for
Lemma 52: first (tχ, z, T ) and second ((ξi)i=1,...,P , (ϑi)i=1,...,P−1, B).

4.2.4 Construction of dynamic shifts
In case of a single closed curve, a characteristic length scale associated with the evolution
of χ̄ is given by r(t) :=

√︂
vol({χ̄1(·,t)=1})

π
, t ∈ [0, Text). Since

d

dt
vol({χ̄(·, t)=1}) = −2π

we infer that ⎧⎨⎩ṙ(t) = − 1
r(t) , t ∈ (0, Text),

r(0) = r0 :=
√︂

vol({χ̄1(·,0)=1})
π

,
(4.60)

Hence, r(t) =
√︂

2(Text − t) and Text = 1
2r

2
0.

In Subsection 4.2.2, we already derived the defining ODEs for (z, T = id+T), at least in a
regime where the weak solution is represented as a sufficiently regular graph over the smooth
solution, cf. (4.46). Of course, there is no guarantee to be in that regime for all times, so
that the general construction needs a robust version of (4.46). To this end, it is convenient to
work with the notion of interface error heights.

Construction 53 (Interface error heights). Let (tχ, z, T ) be as in Lemma 52. Let ζ : R → [0, 1]
be a smooth cutoff function such that ζ(s) = 1 for |s| ≤ 1/(16Cζ) and ζ(s) = 0 for
|s| > 1/(8Cζ), where Cζ ∈ [1,∞) is a given constant. We then define interface error heights

ρ(·, ·; z, T ), ρ±(·, ·; z, T ) :
⋃︂

t∈[0,tχ)
Ī
z,T (t)×{t} → R

through a slicing construction:

ρ+(x, t; z, T ) :=
ˆ 1

2 rT (t)

0
(χ̄z,T1 − χ1)

(︂
x+ℓn

Ī
z,T (·, t), t

)︂
ζ
(︃

ℓ

rT (t)

)︃
dℓ, (4.61)

ρ−(x, t; z, T ) :=
ˆ 0

− 1
2 rT (t)

(χ1 − χ̄z,T1 )
(︂
x+ℓn

Ī
z,T (·, t), t

)︂
ζ
(︃

ℓ

rT (t)

)︃
dℓ, (4.62)

ρ(x, t; z, T ) := ρ+(x, t; z, T ) − ρ−(x, t; z, T ). (4.63)

We have everything in place to construct (tχ, z, T ).

Lemma 54 (Existence of space-time shifts). There exists a unique choice of

• a time horizon tχ > 0,

• a path of translations z ∈ W 1,∞
loc ((0, tχ);R2), and
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• a map T ∈ W 1,∞((0, tχ); (0, Text)), T := id + T strictly increasing,

which in addition satisfy (z(0),T(0)) = (0, 0),

tχ := sup{t : T (t) < 1
2r

2
0}, (4.64)

as well as [︄
ż(t)
Ṫ(t)

]︄
=
⎡⎣ 6
r2

T (t) −́
Ī

z,T (t) ρ(·, t; z, T )n
Ī

z,T (·, t) dH1

4
rT (t) −́

Ī
z,T (t) ρ(·, t; z, T ) dH1

⎤⎦ , t ∈ (0, tχ). (4.65)

In particular, for given δerr ∈ (0, 1
2) one may choose the constant Cζ ≫δerr 1 from Construc-

tion 53 such that

|ż(t)| ≤ δerr
1

rT (t) , |Ṫ(t)| ≤ δerr, t ∈ (0, tχ). (4.66)

The proof of Lemma 54 is given in Section 4.5.1.

4.2.5 Construction of gradient flow calibrations
In contrast to [46], in the present work the smoothly evolving solution χ̄ stems from a simple two-
phase geometry instead of a more complicated multiphase geometry with branching interfaces.
As a consequence, the construction of a gradient flow calibration (cf. [46, Definition 2 and
Definition 4]) is particularly simple and can be given directly as follows.

Construction 55 (Gradient flow calibration up to extinction time). Consider a smooth cutoff
function η : R → [0, 1] such that η(s) = 1 for |s| ≤ 1/8, η(s) = 0 for |s| ≥ 1/4 and
∥η′∥L∞(R) ≤ 16. We then define an extension ξ : R2×[0, Text) → R2 of the unit vector field n̄
by means of

ξ(x, t) = η
(︃sdistĪ(x, t)

r(t)

)︃
nĪ
(︂
PĪ(x, t), t

)︂
, (x, t) ∈ R2×[0, Text). (4.67)

Based on this auxiliary construction, we may now introduce families of vector fields (ξi)i=1,...,P
and (ξi,j)i,j∈{1,...,P},i ̸=j (defined as maps R2×[0, Text) → R2) by the following simple procedure.

• ξi,j := ξi − ξj for any i, j ∈ {1, ..., P}, i ̸= j.

• ξi ≡ 0 for all i /∈ {1, P}.

• ξ1 := −1
2ξ and ξP := 1

2ξ.

Furthermore, we define an extension B : R2×[0, Text) → R2 of the normal velocity field HĪnĪ
of χ̄ through

B(x, t) := η
(︃sdistĪ(x, t)

r(t)

)︃
(HĪnĪ)

(︂
PĪ(x, t), t

)︂
, (x, t) ∈ R2×[0, Text). (4.68)
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Finally, for the construction of the family (ϑi)i=1,...,P−1 (defined as functions mapping
R2×[0, Text) → [−1, 1]), we proceed as follows. Let ϑ̄ : R → [−1, 1] be a smooth func-
tion such that ϑ̄(s) = −s for |s| ≤ 1/4, ϑ̄(s) = −1 for s ≥ 1/2, ϑ̄(s) = 1 for s ≤ −1/2, and
∥ϑ̄′∥L∞(R) ≤ 4. We then define

ϑ(x, t) := 1
r(t) ϑ̄

(︃sdistĪ(x, t)
r(t)

)︃
, (x, t) ∈ R2×[0, Text), (4.69)

and, at last,

• ϑ1 := ϑ,

• ϑi := 1 for all i /∈ {1, P}.

Note that the gradient flow calibration ((ξi)i=1,...,P , (ϑi)i=1,...,P−1, B) from Construction 55
is an admissible input for Lemma 52. From now on, whenever we refer to an admissible
element from either (tχ, z, T ) or ((ξi)i=1,...,P , (ϑi)i=1,...,P−1, B), we always mean their specific
realizations provided by Lemma 54 or Construction 55, respectively.

4.2.6 Time splitting: Regular vs. non-regular times
With the input for Lemma 52 being constructed, the main remaining major task is to upgrade
the preliminary stability estimates (4.58) and (4.59) to the decay estimate (4.5) for the overall
error. The main idea here is to reduce the whole estimation strategy to a regime where
the weak solution χ is only a small perturbation of χ̄, for which we in turn already formally
identified the leading-order contributions to the stability estimates in Subsections 4.2.1–4.2.2.
Definition 56 (Regular and non-regular times). Fix Λ > 0. We then define a disjoint
decomposition

(0, tχ) = Tnon-reg(Λ) ∪ Treg(Λ)
such that

Tnon-reg(Λ) :=

⎧⎨⎩t ∈ (0, tχ) :
P∑︂

i,j=1,i ̸=j

ˆ
Ii,j(t)

1
2 |Vi,j(·, t)|2 dH1 ≥ Λ 2π

rT (t)

⎫⎬⎭. (4.70)

The motivation behind the previous definition is as follows. On one side, for non-regular times,
the right hand sides of the preliminary stability estimates (4.58) and (4.59) turn out to be
easily estimated thanks to the defining condition of disproportionally large dissipation of the
weak solution, cf. (4.70). On the other side, the opposite of (4.70) together with a smallness
assumption on the overall error (consistent with the decay (4.5)) imply for regular times the
desired perturbative setting. The latter is formalized in the following result.
Proposition 57 (Perturbative regime at regular times). Fix Λ > 0 and let t ∈ Treg(Λ), i.e.,
t ∈ (0, tχ) such that

P∑︂
i,j=1,i ̸=j

ˆ
Ii,j(t)

1
2 |Vi,j(·, t)|2 dH1 < Λ 2π

rT (t) . (4.71)

Given Cζ ≥ 1 from Construction 53 and given any C,C ′ ≥ 1, there exists a constant
δ ≪Λ,C,C′,Cζ

1
2 such that

E[χ|χ̄z,T ](t) ≤ δrT (t) (4.72)
implies:
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• χi(·, t) ≡ 0 for all i /∈ {1, P}.

• There exists a height function

h(·, t) ∈ H2(Īz,T (t)) (4.73)

such that the only remaining interface is given by

I1,P (t) =
{︂
x ∈ Ī

z,T (t) : x+ h(x, t)n
Ī

z,T (x, t)
}︂
. (4.74)

• Finally, it holds

∥h(·, t)∥
L∞(Īz,T (t)) ≤ rT (t)

16 max{C,Cζ}
, (4.75)

∥h′(·, t)∥
L∞(Īz,T (t)) ≤ 1

C ′ . (4.76)

In particular, the height function h(·, t) coincides with the interface error height ρ(·, t; z, T )
from Construction 53 and (4.65) simply reads

[︄
ż(t)
Ṫ(t)

]︄
=
⎡⎣ 6
r2

T (t) −́
Ī

z,T (t) h(·, t)n
Ī

z,T (·, t) dH1

4
rT (t) −́

Ī
z,T (t) h(·, t) dH1

⎤⎦ . (4.77)

In the perturbative regime of Proposition 57, our error functionals take the following form.

Lemma 58 (Error functionals in perturbative regime). Fix t ∈ (0, tχ) and assume that the
conclusions of Proposition 57 hold true. Given δerr ∈ (0, 1), one may select C,C ′ ≫δerr 1
from (4.75)–(4.76) such that

(1−δerr)
ˆ
Ī

z,T (t)

1
2

(︃
h(·, t)
rT (t)

)︃2
dH1

≤ Ebulk[χ|χ̄z,T ](t) ≤ (1+δerr)
ˆ
Ī

z,T (t)

1
2

(︃
h(·, t)
rT (t)

)︃2
dH1

(4.78)

as well as
(1−δerr)

ˆ
Ī

z,T (t)

1
2 |h′(·, t)|2 dH1

≤ Erel[χ|χ̄z,T ](t) ≤ (1+δerr)
ˆ
Ī

z,T (t)

1
2 |h′(·, t)|2 dH1.

(4.79)

The proofs of Proposition 57 and of Lemma 58 are given in Section 4.6.1 and in Section 4.6.2,
respectively.

4.2.7 Stability estimates at non-regular times
In a next step, we take care of the estimation of the right hand sides of (4.58) and (4.59) in
the case of disproportionally large dissipation.
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Lemma 59. There exist Λ ≫δ,δasymp 1 as well as δ, δasymp ≪ 1
2 such that for every t ∈

Tnon-reg(Λ) satisfying (4.12) and E[χ|χ̄z,T ](t) ≤ δrT (t) it holds
P∑︂

i,j=1,i ̸=j

1
2

(︃
− Di,j[χ|χ̄z,T ](t) + RHS int

i,j [χ|χ̄z,T ](t)
)︃

+
P−1∑︂
i=1

RHSbulk
i [χ|χ̄z,T ](t) (4.80)

≤ −1
2

P∑︂
i,j=1,i ̸=j

ˆ
Ii,j(t)

1
2 |Vi,j(·, t)|2 dH1.

We may easily post-process the estimate (4.80) to an estimate in terms of our error functional
consistent with the final decay estimate (4.5).

Corollary 60. There exist Λ ≫δ,δasymp 1 as well as δ, δasymp ≪ 1
2 such that for every

t ∈ Tnon-reg(Λ) satisfying (4.12) and E[χ|χ̄z,T ](t) ≤ δrT (t) it holds
P∑︂

i,j=1,i ̸=j

1
2

(︃
− Di,j[χ|χ̄z,T ](t) + RHS int

i,j [χ|χ̄z,T ](t)
)︃

+
P−1∑︂
i=1

RHSbulk
i [χ|χ̄z,T ](t) (4.81)

≤ − 5
r2
T (t)E[χ|χ̄z,T ](t).

The proofs of Lemma 59 and of Corollary 60 can be found in Section 4.4.2.

4.2.8 Stability estimates for perturbative regime
We proceed with the estimation of the right hand sides of (4.58) and (4.59) in the perturbative
regime described by Proposition 57. We first derive the version of the stability estimate (4.44)
without making use of the assumption on χ̄ being quantitatively close to a shrinking circle.
The derivation of these estimates, namely the proofs of the following lemmas, are contained
in Sections 4.4.3-4.4.4-4.4.5 .

Lemma 61 (Stability estimate in perturbative setting: variable coefficients). Fix t ∈ (0, tχ)
and assume that the conclusions of Proposition 57 hold true. Given δerr ∈ (0, 1), one may
choose the constants C,C ′ ≫δerr 1 from (4.75)–(4.76) such that

P∑︂
i,j=1,i ̸=j

1
2

(︃
− Di,j[χ|χ̄z,T ](t) + 1

2RHS
int
i,j [χ|χ̄z,T ](t)

)︃

+
P−1∑︂
i=1

RHSbulk
i [χ|χ̄z,T ](t) ≤ Rl.o.t. +Rh.o.t.,

(4.82)

where the leading order terms are given by

Rl.o.t. := −
ˆ
Ī

z,T (t)
(h′′)2(·, t) dH1

+
ˆ
Ī

z,T (t)

(︄
3
2H

2
Ī

z,T (·, t) − 1
r2
T (t)

)︄
(h′)2(·, t) dH1

+
ˆ
Ī

z,T (t)

1
r2
T (t)

(︄
1
2H

2
Ī

z,T (·, t) + 1
r2
T (t)

)︄
h2(·, t) dH1

−
ˆ
Ī

z,T (t)

(︃ 1
r2
T (t) +H2

Ī
z,T (·, t)

)︃
h(·, t)n

Ī
z,T (·, t) · ż(t) dH1
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−
ˆ
Ī

z,T (t)

1
r2
T (t)HĪ

z,T (·, t)h(·, t)Ṫ(t) dH1

−
ˆ
Ī

z,T (t)
H ′
Ī

z,T (·, t)
(︂
τ
Ī

z,T (·, t) · ż(t)
)︂
h(·, t) dH1

−
ˆ
Ī

z,T (t)
H ′
Ī

z,T (·, t)Ṫ(t)h′(·, t) dH1

+
ˆ
Ī

z,T (t)
2H

Ī
z,T (·, t)H ′

Ī
z,T (·, t)h(·, t)h′(·, t) dH1

and the higher order terms are given by

Rh.o.t. := δerr

ˆ
Ī

z,T (t)
(h′′)2(·, t) dH1

+ δerr

ˆ
Ī

z,T (t)

(︃ 1
r2
T (t)+

⃓⃓⃓
H ′
Ī

z,T

⃓⃓⃓
(·, t)

)︃
(h′)2(·, t) dH1

+ δerr

ˆ
Ī

z,T (t)

(︃ 1
r4
T (t)+

(︂
H ′
Ī

z,T

)︂2
(·, t)

)︃
h2(·, t) dH1

+ δerr

ˆ
Ī

z,T (t)

1
rT (t)

⃓⃓⃓
h′(·, t)τ

Ī
z,T · ż

⃓⃓⃓
+ 1
r2
T (t)

⃓⃓⃓
h(·, t)n

Ī
z,T · ż

⃓⃓⃓
dH1

+ δerr

ˆ
Ī

z,T (t)

1
r3
T (t)

⃓⃓⃓
h(·, t)Ṫ

⃓⃓⃓
+
⃓⃓⃓
H ′
Ī

z,T (·, t)h′(·, t)Ṫ
⃓⃓⃓
dH1.

In a second step, we post-process the previous estimate (4.82) to the constant-coefficient
estimate (4.44). In PDE jargon, this amounts to nothing else than a freezing of coefficients,
only exploiting the estimates from Definition 50.

Lemma 62 (Stability estimate in perturbative setting: frozen coefficients). Fix t ∈ (0, tχ),
assume that the conclusions of Proposition 57 hold true, and define ˜︁h(·, t) : [0, 2π) → R,
θ ↦→ h

(︂
γ̄z,T

(︂L
γ̄z,T

2π θ, t
)︂
, t
)︂
. Given δerr ∈ (0, 1), one may choose the constants C,C ′ ≫δerr 1

from (4.75)–(4.76) as well as the constant δasymp ≪δerr
1
2 from Definition 50 such that

P∑︂
i,j=1,i ̸=j

1
2

(︃
− Di,j[χ|χ̄z,T ](t) + 1

2RHS
int
i,j [χ|χ̄z,T ](t)

)︃

+
P−1∑︂
i=1

RHSbulk
i [χ|χ̄z,T ](t) ≤ ˜︁Rl.o.t. + ˜︁Rh.o.t.,

(4.83)

where the leading order terms are given by

˜︁Rl.o.t. := − 1
r3
T (t)

ˆ 2π

0
(∂2
θ
˜︁h)2(·, t) − 1

2(∂θ˜︁h)2(·, t) − 3
2
˜︁h2(·, t) dθ

− 4 1
r3
T (t)

(︄
1√
2π

ˆ 2π

0

˜︁h(·, t) dθ
)︄2

− 6 1
r3
T (t)

⃓⃓⃓⃓
⃓ 1√
π

ˆ 2π

0

˜︁h(·, t)eiθ dθ
⃓⃓⃓⃓
⃓
2

and the higher order term is simply given by

˜︁Rh.o.t. := δerr
1

r3
T (t)

ˆ 2π

0
(∂2
θ
˜︁h)2(·, t) + 1

2(∂θ˜︁h)2(·, t) + 3
2
˜︁h2(·, t) dθ.
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Since we reduced matters to the constant coefficient case, we may now in a third step employ
Fourier methods to obtain in the perturbative regime a stability estimate consistent with the
decay estimate (4.5).

Lemma 63 (Final stability estimate in perturbative setting). Fix t ∈ (0, tχ) and assume
that the conclusions of Proposition 57 hold true. Given α ∈ (1, 5), one may choose the
constants C,C ′ ≫α 1 from (4.75)–(4.76), the constant δasymp ≪α

1
2 from Definition 50, and

the constant Cζ ≫α 1 from Construction 53 such that

P∑︂
i,j=1,i ̸=j

1
2

(︃
− Di,j[χ|χ̄z,T ](t) + 1

2RHS
int
i,j [χ|χ̄z,T ](t)

)︃
+

P−1∑︂
i=1

RHSbulk
i [χ|χ̄z,T ](t) (4.84)

≤ − α

r2
T (t)(1+Ṫ)E[χ|χ̄z,T ](t).

4.2.9 A priori stability estimate up to extinction time
The penultimate step of our strategy is simply a summary of our estimates from Subsec-
tions 4.2.6–4.2.8.

Theorem 64. Fix a decay exponent α ∈ (1, 5) and a time ˜︁tχ ∈ (0, tχ). One may choose the
constant Cζ ≫α 1 from Construction 53 as well as constants δasymp ≪α

1
2 and δ ≪α,Cζ

1
2

(all independent of ˜︁tχ) such that if for all t ∈ (0, Text) the interior of {χ̄1(·, t)=1} ⊂ R2 is
δasymp-close to a circle with radius r(t) :=

√︂
2(Text−t) in the sense of Definition 50 and

E[χ|χ̄z,T ](t) ≤ δrT (t) for all t ∈ [0, ˜︁tχ), (4.85)

then it holds for all [s, τ ] ⊂ [0, ˜︁tχ)

E[χ|χ̄z,T ](τ) +
ˆ τ

s

α

r2
T (t)

(︂
1+Ṫ(t)

)︂
E[χ|χ̄z,T ](t) dt ≤ E[χ|χ̄z,T ](s). (4.86)

The unconditional decay estimate (4.5) from Theorem 48 now follows by means of a simple
ODE argument (cf. Section 4.3). The asserted estimates (4.3)–(4.4) on the space-time shifts
are in turn the content of the following result.

Lemma 65. In the setting of Theorem 64, one may choose the constants such that assump-
tion (4.85) implies

1
r0

∥z∥L∞
t (0,tχ) ≤

√︄
1
r0
E[χ0|χ̄0], (4.87)

1
Text

∥T − id∥L∞
t (0,tχ) ≤

√︄
1
r0
E[χ0|χ̄0]. (4.88)

4.3 Proof of Theorem 48
We proceed in two steps. For the whole proof, fix α ∈ (1, 5), and choose Cζ ≫α 1,
δasymp ≪α

1
2 and δ ≪α,Cζ

1
2 such that Theorem 64 applies. We then also fix an auxiliary

constant κ ∈ (0, δr0).
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Step 1: Post-processed a priori stability estimate. As the conclusion of Theorem 64 holds true,
we may deduce that

E[χ|χ̄z,T ](t) ≤
(︂
E[χ0|χ̄0]+κ

)︂(︃rT (t)
r0

)︃α
=: e(t) for any κ > 0, for all t ∈ (0, tχ). (4.89)

Indeed, it is not hard to show that (0, tχ) ∋ t ↦→ E[χ|χ̄z,T ](t) ∈ [0,∞) is absolutely continuous
due to the conditions satisfied by χ being a BV solution for multiphase mean curvature flow
in the sense of Definition 49, and the identity

E[χ|χ̄z,T ](t) = E[χ(·, t)] −
P∑︂
i=1

ˆ
R2
χi(·, t)(∇ · ξz,T )(·, t) dx

+
P−1∑︂
i=1

ˆ
R2

(χi−χ̄z,Ti )(·, t)ϑz,Ti (·, t) dx.

As a consequence, we infer from (4.86) that d
dt
E[χ|χ̄z,T ] ≤ − α

r2
T

(1+Ṫ)E[χ|χ̄z,T ] a.e. in (0, tχ).
Since also d

dt
e = − α

r2
T

(1+Ṫ)e, we obtain d
dt
E[χ|χ̄z,T ]

e
≤ 0 a.e. in (0, tχ). Hence, by absolute

continuity of the ratio E[χ|χ̄z,T ]/e, the claim (4.89) holds true.
Step 2: Proof of (4.5) under assumption (4.1). Define

T :=
{︂
t ∈ (0, tχ) : E[χ|χ̄z,T ](t) > e(t)

}︂
, (4.90)

and we argue in favor of (4.5) by contradiction. Hence, we assume T ̸= ∅ and define˜︁tχ := inf T ∈ [0, tχ). Since E[χ0|χ̄z,T0 ] < e(0), it is not hard to show that ˜︁tχ ̸= 0. Then,
by construction and hypothesis (4.1), we observe that assumption (4.85) is in place for all
t ∈ [0, ˜︁tχ). In other words, the estimate (4.89) applies on (0, tχ) so that continuity of the
ratio E[χ|χ̄z,T ]/e contradicts our assumption T ̸= ∅. Hence, T = ∅ and taking the limit
κ ↓ 0 implies the decay estimate (4.5). Finally, the bounds (4.3) and (4.4) follow from
Lemma 65.

4.4 Weak-strong stability estimates
4.4.1 Proof of Lemma 52: Preliminary stability estimate
For a proof of (4.58) and (4.59), we refer the interested reader to the proofs of [46, Proposi-
tion 17] and [46, Lemma 20].

4.4.2 Proof of Lemma 59 and Corollary 60: Stability at non-regular
times

Before we turn to the proofs of Lemma 59 and Corollary 60, respectively, we start with a
useful auxiliary result.

Lemma 66. Consider gradient flow calibration ((ξi)i=1,...,P , (ϑi)i=1,...,P−1, B) from Construc-
tion 55 and recall that ξi,j := ξi − ξj for all distinct i, j ∈ {1, . . . , P}. There exists a universal
constant ˜︁C ∈ [1,∞) such that for all t ∈ [0, tχ) and all i, j ∈ {1, . . . , P} with i ̸= j, it holds

⃦⃦⃦(︂
∂tξ

z,T
i,j

)︂
(·, t)

⃦⃦⃦
L∞(R2)

≤
˜︁C

r2
T (t) , (4.91)
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⃦⃦⃦(︂
∇ · ξz,Ti,j

)︂
(·, t)

⃦⃦⃦
L∞(R2)

≤
˜︁C

rT (t) , (4.92)

⃦⃦⃦(︂
∂tϑ

z,T
i

)︂
(·, t)

⃦⃦⃦
L∞(R2)

≤
˜︁C

r3
T (t) . (4.93)

Proof of Lemma 66. Fix t ∈ [0, tχ) and i, j ∈ {1, . . . , P} with i ̸= j. Recalling Construc-
tion 55, we observe that ξi,j ∈ {±ξ,±1

2ξ, 0}, so that it suffices to estimate in terms of the
vector field ξ. Recalling its definition (4.67) in the form of

ξz,T (·, t) = η
(︃sdist

Ī
z,T (·, t)

rT (t)

)︃
n
Ī

z,T

(︂
P
Ī

z,T (·, t), t
)︂

= η
(︃sdist

Ī
z,T (·, t)

rT (t)

)︃(︂
∇ sdist

Ī
z,T

)︂
(·, t),

(4.94)

we directly compute

(︂
∇ · ξz,T

)︂
(·, t) = 1

rT (t)η
′
(︃sdist

Ī
z,T (·, t)

rT (t)

)︃

− η
(︃sdist

Ī
z,T (·, t)

rT (t)

)︃ H
Ī

z,T

(︂
P
Ī

z,T (·, t), t
)︂

1 −H
Ī

z,T

(︂
P
Ī

z,T (·, t), t
)︂

sdist
Ī

z,T (·, t)
,

so that (4.92) follows from |η′| ≤ 16, |HĪ(·, t)| ≤ 2/r(t) and | sdistĪ(·, t)| ≤ r(t)/4 on
supp ξ(·, t), t ∈ [0, Text).

Furthermore, since

∂tsĪz,T (·, t) = −H
Ī

z,T

(︂
P
Ī

z,T (·, t), t
)︂
(1+Ṫ) − n

Ī
z,T

(︂
P
Ī

z,T (·, t), t
)︂

· ż, (4.95)

which itself one may either directly read off from the obvious generalization of (4.37) or
alternatively from (4.17), we also get

(︂
∂tξ

z,T
)︂
(·, t) = η

(︃sdist
Ī

z,T (·, t)
rT (t)

)︃(︂
∇∂t sdist

Ī
z,T

)︂
(·, t)

+ 1
rT (t)η

′
(︃sdist

Ī
z,T (·, t)

rT (t)

)︃(︂
∂t sdist

Ī
z,T

)︂
(·, t)n

Ī
z,T

(︂
P
Ī

z,T (·, t), t
)︂

+ η′
(︃sdist

Ī
z,T (·, t)

rT (t)

)︃sdist
Ī

z,T (·, t)
r3
T (t) (1+Ṫ)n

Ī
z,T

(︂
P
Ī

z,T (·, t), t
)︂

= −η
(︃sdist

Ī
z,T (·, t)

rT (t)

)︃ H ′
Ī

z,T

(︂
P
Ī

z,T (·, t), t
)︂
(1+Ṫ)

1 −H
Ī

z,T

(︂
P
Ī

z,T (·, t), t
)︂

sdist
Ī

z,T (·, t)
(4.96)

+ η
(︃sdist

Ī
z,T (·, t)

rT (t)

)︃H
Ī

z,T

(︂
P
Ī

z,T (·, t), t
)︂
τ
Ī

z,T

(︂
P
Ī

z,T (·, t), t
)︂

· ż

1 −H
Ī

z,T

(︂
P
Ī

z,T (·, t), t
)︂

sdist
Ī

z,T (·, t)

+ 1
rT (t)η

′
(︃sdist

Ī
z,T (·, t)

rT (t)

)︃(︂
∂t sdist

Ī
z,T

)︂
(·, t)n

Ī
z,T

(︂
P
Ī

z,T (·, t), t
)︂

+ η′
(︃sdist

Ī
z,T (·, t)

rT (t)

)︃sdist
Ī

z,T (·, t)
r3
T (t) (1+Ṫ)n

Ī
z,T

(︂
P
Ī

z,T (·, t), t
)︂
.
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Hence, (4.91) follows from (4.96), (4.95), (4.15), (4.66), and the estimates used for the
derivation of (4.92).
Recalling Construction 55, we observe that ϑi ∈ {ϑ, 1}, so that it suffices to estimate in terms
of the function ϑ. Recalling its definition (4.67) in the form of

ϑz,T (·, t) = 1
rT (t) ϑ̄

(︃sdist
Ī

z,T (·, t)
rT (t)

)︃
, (4.97)

we obtain (︂
∂tϑ

z,T
)︂
(·, t) = (1+Ṫ)

r3
T (t) ϑ̄

(︃sdist
Ī

z,T (·, t)
rT (t)

)︃

+ 1
rT (t) ϑ̄

′
(︃sdist

Ī
z,T (·, t)

rT (t)

)︃(︂∂t sdist
Ī

z,T

)︂
(·, t)

rT (t)

+ 1
rT (t) ϑ̄

′
(︃sdist

Ī
z,T (·, t)

rT (t)

)︃sdist
Ī

z,T (·, t)
r3
T (t) (1+Ṫ),

(4.98)

so that, based on the previous ingredients, we have |ϑ̄′| ≤ 2 and | sdistĪ(·, t)| ≤ r(t)/4 on
supp ϑ̄′(︂ sdistĪ(·, t)/(r(t)/4)

)︂
, t ∈ [0, Text), and we may deduce (4.93).

Lemma 67. Fix t ∈ (0, tχ). For every δerr ∈ (0, 1) there exist δ, δasymp ≪δerr
1
2 such

that (4.12)-(4.15) and the condition E[χ|χ̄z,T ](t) ≤ δrT (t) imply
P∑︂

i,j=1,i ̸=j

1
2

ˆ
Ii,j(t)

1 dHd−1 ≤ (1+δerr)C̃πrT (t), (4.99)

where ˜︁C ∈ [0,∞) is the constant from Lemma 66.

Proof. One can compute
P∑︂

i,j=1,i ̸=j

1
2

ˆ
Ii,j(t)

1 dHd−1 = Eint[χ|ξ̄z,T ](t) +
P∑︂
i=1

ˆ
Rd

χi∇ · ξz,Ti dx

≤ δrT (t) +
P∑︂
i=1

ˆ
Rd∩supp η

|∇ · ξz,Ti | dx,

whence we can deduce (4.99) using (4.92) together with (4.14).

Proof of Lemma 59. Fix t ∈ Tnon-reg(Λ) for yet to be chosen Λ ≫ 1. For notational simplicity,
let us in the sequel drop the dependence on t of all quantities. Since the definition of the error
functionals is independent of the precise choice of the vector field B, we may interpret the
right hand sides of (4.58) and (4.59) with B ≡ 0 and therefore obtain for all i, j ∈ {1, . . . , P}
with i ̸= j:

− Di,j[χ|χ̄z,T ] +RHS int
i,j [χ|χ̄z,T ]

= −
ˆ
Ii,j

|Vi,j|2 dH1 −
ˆ
Ii,j

Vi,j∇ · ξz,Ti,j dH1 −
ˆ
Ii,j

ni,j · ∂tξz,Ti,j dH1 (4.100)

and for all i ∈ {1, . . . , P−1}

RHSbulk
i [χ|χ̄z,T ]

=
ˆ
R2

(χi − χ̄z,Ti )∂tϑz,Ti dx+
P∑︂

j=1, i ̸=j

ˆ
Ii,j

Vi,jϑ
z,T
i dH1.

(4.101)
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Before we start estimating the right hand sides of (4.100) and (4.101), we fix δ, δasymp ≪ 1
such that the conclusion of Lemma 67 applies for the choice δerr = 1

2 .
From Hölder’s inequality, (4.99) and (4.92), we then directly infer

⃓⃓⃓⃓
⃓
ˆ
Ii,j

Vi,j∇ · ξz,Ti,j dH1
⃓⃓⃓⃓
⃓ ≲ 1

√
rT

(︄ ˆ
Ii,j

|Vi,j|2 dH1
)︄ 1

2

.

Similarly, we may estimate due to (4.91)⃓⃓⃓⃓
⃓
ˆ
Ii,j

ni,j · ∂tξz,Ti,j dH1
⃓⃓⃓⃓
⃓ ≲ 1

rT

and, since |ϑz,Ti | ≤ 1/rT , also
⃓⃓⃓⃓
⃓
ˆ
Ii,j

Vi,jϑ
z,T
i dH1

⃓⃓⃓⃓
⃓ ≲ 1

√
rT

(︄ ˆ
Ii,j

|Vi,j|2 dH1
)︄ 1

2

.

Finally, the estimates (4.99), (4.12) and (4.93) together with the isoperimetric inequality imply⃓⃓⃓⃓
⃓
ˆ
R2

(χi − χ̄z,Ti )∂tϑz,Ti dx

⃓⃓⃓⃓
⃓ ≲ 1

rT
.

Plugging these estimates back into (4.100) and (4.101), we may infer the claim (4.80) from
employing the defining condition (4.70) of non-regular times for Λ ≫ 1.

Proof of Corollary 60. Denote by ˜︁Λ and (˜︁δ, ˜︁δasymp) the constants from Lemma 59. The
choices Λ := max{˜︁Λ, 10} and (δ, δasymp) := (˜︁δ, ˜︁δasymp) then imply the claim. Indeed, for
t ∈ Tnon-reg(Λ) satisfying the assumption E[χ|χ̄z,T ](t) ≤ δrT (t), it follows from the defining
condition (4.70)

5
r2
T (t)E[χ|χ̄z,T ](t) ≤ 5

rT (t) ≤ 1
2

Λ
rT (t) ≤ 1

2

P∑︂
i,j=1,i ̸=j

ˆ
Ii,j(t)

1
2 |Vi,j(·, t)|2 dH1,

so that the validity of (4.80) implies (4.81).

4.4.3 Proof of Lemma 61: Stability estimate in perturbative
setting I

The asserted bound (4.82) follows directly from the estimates (4.126)–(4.139) established in
Section 4.7.

4.4.4 Proof of Lemma 62: Stability estimate in perturbative
setting II

For notational simplicity, we again neglect the dependence on t of all quantities. Our proof of
the estimate (4.83) proceeds in several steps.
Step 1: Leading order terms involving H ′

Ī
z,T . We start by providing a preliminary estimate

for the last three right hand side terms of Rl.o.t. from Lemma 61. To this end, for each of
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the three terms we make use of Definition 50 in the form of |H ′
Ī

z,T | ≤ δasymp/r
2
T . Hence, by

Young’s inequality and |H
Ī

z,T | ≤ 2/rT
ˆ
Ī

z,T
2H

Ī
z,TH ′

Ī
z,Thh′ dH1 ≲ δasymp

ˆ
Ī

z,T

1
r2
T

(h′)2 + 1
r4
T

h2 dH1. (4.102)

Furthermore, by the defining ODE for the space-time shift in the form of (4.77), Jensen’s
inequality and (4.12), we obtain

−
ˆ
Ī

z,T
H ′
Ī

z,T

(︂
τ
Ī

z,T · ż
)︂
h dH1 ≲ δasymp

ˆ
Ī

z,T

1
r4
T

h2 dH1 (4.103)

as well as

−
ˆ
Ī

z,T
H ′
Ī

z,T Ṫh′ dH1 ≲ δasymp

ˆ
Ī

z,T

1
r2
T

(h′)2 + 1
r4
T

h2 dH1, (4.104)

where for the latter we also used Young’s inequality.
Step 2: Freezing of coefficients in leading order quadratic terms. As a simple consequence
of (4.14), |H

Ī
z,T | ≤ 2/rT and a2 − b2 = (a− b)(a+ b), it holds

ˆ
Ī

z,T

(︄
3
2H

2
Ī

z,T − 1
r2
T

)︄
(h′)2 dH1 +

ˆ
Ī

z,T

1
r2
T

(︄
1
2H

2
Ī

z,T + 1
r2
T

)︄
h2 dH1

≤
ˆ
Ī

z,T

1
2

1
r2
T

(h′)2 + 3
2

1
r4
T

h2 dH1 + 9
2δasymp

ˆ
Ī

z,T

1
r2
T

(h′)2 + 1
r4
T

h2 dH1.

(4.105)

Step 3: Freezing of coefficients in leading order correction terms. By the arguments from the
previous two steps, we may estimate

−
ˆ
Ī

z,T

(︃ 1
r2
T

+H2
Ī

z,T

)︃
hn

Ī
z,T · ż dH1 −

ˆ
Ī

z,T

1
r2
T

H
Ī

z,ThṪ dH1

≤ −
ˆ
Ī

z,T

2
r2
T

hn
Ī

z,T · ż dH1 −
ˆ
Ī

z,T

1
r3
T

hṪ dH1

+ ˜︁Cδasymp

ˆ
Ī

z,T

1
r4
T

h2 dH1,

(4.106)

where ˜︁C > 0 is some universal constant.
Step 4: Change of variables in quadratic terms. Recalling the definition [0, 2π) ∋ θ ↦→
h
(︂
γ̄z,T (Lγ̄z,T

2π θ)
)︂
, a simple change of variables together with condition (4.12) trivially entails

1
(1+δasymp)3

1
r3
T

ˆ 2π

0
(∂2
θ
˜︁h)2 dθ ≤

ˆ
Ī

z,T
(h′′)2 dH1, (4.107)

ˆ
Ī

z,T
(h′′)2 dH1 ≤ 1

(1−δasymp)3
1
r3
T

ˆ 2π

0
(∂2
θ
˜︁h)2 dθ, (4.108)

ˆ
Ī

z,T

1
r2
T

(h′)2 dH1 ≤ 1
(1−δasymp)

1
r3
T

ˆ 2π

0
(∂θ˜︁h)2 dθ, (4.109)

ˆ
Ī

z,T

1
r4
T

h2 dH1 ≤ (1+δasymp) 1
r3
T

ˆ 2π

0

˜︁h2 dθ. (4.110)
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Step 5: Change of variables in correction terms. We claim that⃓⃓⃓⃓
⃓−
ˆ
Ī

z,T

2
r2
T

hn
Ī

z,T · ż dH1 −
(︄

− 6 1
r3
T (t)

⃓⃓⃓⃓ 1√
π

ˆ 2π

0

˜︁h(·, t)eiθ dθ
⃓⃓⃓⃓2)︄⃓⃓⃓⃓⃓

+
⃓⃓⃓⃓
⃓−
ˆ
Ī

z,T

1
r2
T

H
Ī

z,ThṪ dH1 −
(︄

− 4 1
r3
T (t)

(︃ 1√
2π

ˆ 2π

0

˜︁h(·, t) dθ
)︃2
)︄⃓⃓⃓⃓
⃓

≤ ˜︁Cδasymp
1
r3
T

ˆ 2π

0

˜︁h2 dθ,

(4.111)

where ˜︁C > 0 is some universal constant. Indeed, this follows similarly to the previous steps,
exploiting in the process the two conditions (4.12) and (4.13) as well as the defining ODE of
the space-time shift in the form of (4.77).
Step 6: Conclusion. Based on the previous steps, we infer that, for given δerr ∈ (0, 1), one
may choose δasymp ≪δerr 1 such that the leading order contribution Rl.o.t. from Lemma 61 is
estimated by ˜︁Rl.o.t. + 1

2
˜︁Rh.o.t.. Since the higher order contribution Rh.o.t. from Lemma 61 can

be easily estimated in terms of 1
2
˜︁Rh.o.t. for a suitable choice of δasymp ≪δerr 1 by means of the

previous arguments, this concludes the proof of (4.83).

4.4.5 Proof of Lemma 63: Final stability estimate in perturbative
setting

First, we observe that by Lemma 58 and the estimates (4.109)–(4.110) from the previous
proof that, for given δerr ∈ (0, 1), one may choose C,C ′ ≫δerr 1 and δasymp ≪δerr 1 such that

E[χ|χ̄z,T ] ≤ (1+δerr)
1
rT

1
2
⃦⃦⃦˜︁h⃦⃦⃦2

H1(0,2π)
=: I. (4.112)

Second, thanks to Lemma 62, for given δerr ∈ (0, 1), one may choose C,C ′ ≫δerr 1 and
δasymp ≪δerr 1 such that

P∑︂
i,j=1,i ̸=j

1
2

(︃
− Di,j[χ|χ̄z,T ] + 1

2RHS
int
i,j [χ|χ̄z,T ]

)︃
+

P−1∑︂
i=1

RHSbulk
i [χ|χ̄z,T ]

≤ − 1
r3
T

ˆ 2π

0
(1−δerr)(∂2

θ
˜︁h)2 − (1+δerr)

1
2(∂θ˜︁h)2 − (1+δerr)

3
2
˜︁h2 dθ (4.113)

− 4 1
r3
T

(︄
1√
2π

ˆ 2π

0

˜︁h dθ)︄2

− 6 1
r3
T

⃓⃓⃓⃓
⃓ 1√
π

ˆ 2π

0

˜︁heiθ dθ ⃓⃓⃓⃓⃓
2

=: II.

Now, fix α ∈ (1, 5). We claim that there exist δerr ≪α 1 as well as a choice of the constant
Cζ ≫α 1 from Construction 53 such that

II ≤ − α

r2
T

(1+Ṫ)I, (4.114)

so that the claim (4.84) follows from (4.112)–(4.114). Fourier decomposing both sides of the
asserted inequality (4.114), we may indeed derive the validity of (4.114) for suitably chosen
δerr ≪α 1 and Cζ ≫α 1 analogously to our analysis towards the end of Subsection 4.2.2 (cf.
(4.49)–(4.52)), exploiting in the process also the bound (4.66).
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4.4.6 Proof of Theorem 64: Overall a priori stability estimate
The stability estimate (4.86) follows directly from combining all results from Subsections 4.2.3–
4.2.8, in particular Lemma 52, Corollary 60, and Lemma 63. Note in this context that
assumption (4.85) imply E[χ|χ̄z,T ](t) ≤ δrT (t) for all t ∈ (0, tχ).

4.5 Construction and properties of space-time shifts

4.5.1 Proof of Lemma 54: Existence of space-time shifts
Our aim is to prove the existence of a time horizon tχ ∈ (0,∞), a locally Lipschitz map
z : [0, tχ) → Rd and a strictly increasing Lipschitz map T =: id+T : [0, tχ) → [0,∞) such
that (z(0), T (0)) = (0, 0) and

tχ = sup
{︃
t : T (t) < 1

2r
2
0 = Text

}︃
, (4.115)[︄

ż(t)
Ṫ(t)

]︄
= F (z, T, t), t ∈ (0, tχ), (4.116)

where

F (z, T, t) :=
⎡⎣ 6
r2

T (t) −́
Ī

z,T (t) ρ(·, t; z, T )n
Ī

z,T (·, t) dH1

4
rT (t) −́

Ī
z,T (t) ρ(·, t; z, T ) dH1

⎤⎦ . (4.117)

Note that the asserted Lipschitz bounds (4.66) are then immediate consequences of integrat-
ing (4.116) and |ρ(x, t; z, T )| ≤ rT (t)/(8Cζ), cf. Construction 53 .

The proof of existence of the solution is obtained by successive approximations and an
application of the Picard–Lindelöf argument. To this end, we introduce an auxiliary version of
our problem labeled by integers k ≥ 1, which reads as[︄

żk(t)
Ṫk(t)

]︄
= Fk(zk, Tk, t), (zk(0), Tk(0)) = (0, 0), (4.118)

where the right hand side Fk : Cb([0,∞);R2)×Cb([0,∞); [0,∞))×[0,∞) → R3 is defined by
truncation:

Fk(z, T, t) = F
(︂
z,min

{︂
T, 1

2r
2
0(1− 1

k
)
}︂
, t
)︂
, t ∈ [0,∞). (4.119)

Here, Cb([0,∞);X) denotes the space of bounded and continuous functions taking values in
a Banach space X.

We will show below that the fixed point equation obtained from integrating (4.118) admits a
unique solution zk ∈ Cb([0,∞);R2) and Tk ∈ Cb([0,∞); [0,∞)), where t ↦→ Tk(t) is strictly
increasing such that

1
2t ≤ Tk(t) ≤ 3

2t. (4.120)

(The latter two properties are again consequences of |Ṫk| ≤ 1
2 due to the estimates

|ρ(x, t; zk,min{Tk, 1
2r

2
0(1− 1

k
)})| ≤ 1/(8Cζ) and Cζ ≥ 1.)
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Taking the existence of such a sequence of solutions (zk, Tk)k≥1 for granted for the moment,
we then define t0 := 0 and for k ≥ 1

tk = sup
{︂
Tk(t) < 1

2r
2
0(1− 1

k
)
}︂
. (4.121)

By the properties of Tk, uniqueness of solutions to (4.118), as well as the definitions (4.119)
and (4.121), the sequence (tk)k≥1 is strictly increasing and bounded. The solution to (4.116)
is then constructed by

(z(t), T (t)) := (zk(t), Tk(t)), t ∈ [0, tk), (4.122)
tχ := sup

k≥1
tk = lim

k→∞
tk < ∞. (4.123)

Note that (4.122) is indeed well-defined by uniqueness of solutions to (4.118), and that the
identities (4.115)–(4.116) hold true by construction. Hence, it remains to verify the existence
of solutions to (4.118) with the asserted properties.
Fix an integer k ≥ 1. In order to apply the Picard–Lindelöf argument, we have to show that
for given t ∈ (0,∞), the function (z, T ) → Fk(z, T, t) is globally Lipschitz with Lipschitz
constant independent of t. For notational convenience, we abbreviate the truncation byˆ︁T :=

{︂
T, 1

2r
2
0(1− 1

k
)}. First, we compute

1
r2ˆ︁T (t)

1

H1(Īz,
ˆ︁T (t))

= 1
2π

1
r3ˆ︁T (t)

2πrˆ︁T (t)

H1(Ī0,ˆ︁T (t))
,

so that the normalization factor has the required regularity due to the action of the truncation
and the smoothness of the evolution of χ̄. Second, since the Jacobian of the tubular
neighborhood diffeomorphism

x ↦→ (P
Ī

z,ˆ︁T (x, t), s
Ī

z,ˆ︁T (x, t))

is given by x ↦→ 1/(1−(H
Ī

z,ˆ︁T ◦ P
Ī

z,ˆ︁T )(x, t)s
Ī

z,ˆ︁T (x, t)), plugging in the definition (4.61)
together with a change of variables yieldsˆ

Ī
z,ˆ︁T (t)

ρ+(·, t; z, ˆ︁T )n
Ī

z,ˆ︁T (·, t) dH1

=
ˆ

{0≤sdist
Īz,ˆ︁T (·,t)≤rˆ︁T (t)/8}

(︂
1−(H

Ī
z,ˆ︁T ◦ P

Ī
z,ˆ︁T )(·, t)s

Ī
z,ˆ︁T (·, t)

)︂

×
(︂
χ̄z,
ˆ︁T

1 −χ1
)︂
(·, t)ζ

(︃s
Ī

z,ˆ︁T (·, t)
rˆ︁T (t)

)︃
∇s

Ī
z,ˆ︁T (·, t) dx.

Shifting variables, we obtain from the relations (4.17)–(4.19)ˆ
Ī

z,ˆ︁T (t)
ρ+(·, t; z, ˆ︁T )n

Ī
z,ˆ︁T (·, t) dH1

=
ˆ

{0≤sdist
Ī0,ˆ︁T (·,t)≤rˆ︁T (t)/8}

(︂
1−(H

Ī
0,ˆ︁T ◦ P

Ī
0,ˆ︁T )(·, t)s

Ī
0,ˆ︁T (·, t)

)︂

×
(︂
χ̄0,ˆ︁T

1 −χ−z,id
1

)︂
(·, t)ζ

(︃s
Ī

0,ˆ︁T (·, t)
rˆ︁T (t)

)︃
∇s

Ī
0,ˆ︁T (·, t) dx,

and the required regularity estimate follows from this representation by smoothness of the
evolution of χ̄, the action of the truncation, and Lipschitz continuity of translations of volumes.
Since an analogous formula also holds for ρ+ replaced by ρ−, this concludes the proof.
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4.5.2 Proof of Lemma 65: Bounds for space-time shifts
Our goal is to prove (4.87)–(4.88). Fix t ∈ (0, tχ). Note that from (4.56), Construction 55, a
change to tubular neighborhood coordinates, |H

Ī
z,T (·, t)| ≤ 2/rT (t), and (4.63) it follows that

Ebulk[χ|χ̄z,T ](t)

≥
ˆ

{dist(·,Īz,T (t))<rT (t)/8}

⃓⃓⃓
χ1(·, t)−χ̄z,T1 (·, t)

⃓⃓⃓⃓⃓⃓
ϑ1(·, t)

⃓⃓⃓
dx

=
ˆ
Ī

z,T (t)

ˆ rT (t)
8

− rT (t)
8

(χ1−χ̄z,T1 )
(︂

· +sn
Ī

z,T (·, t), t
)︂

1−H
Ī

z,T (·, t)s
−s
r2
T (t) dsdH1

≥ 4
5

ˆ
Ī

z,T (t)

1
2

1
r2
T (t)

(︃
ρ2

+(·, t; z, T ) + ρ2
−(·, t; z, T )

)︃
dH1

≥ 1
10

ˆ
Ī

z,T (t)

(︃
ρ(·, t; z, T )
rT (t)

)︃2
dH1.

(4.124)

Hence, plugging in (4.65) and (4.66), recalling (4.12), and using Jensen’s inequality
1
r0

|z(t)| ≤
ˆ t

0

1
r0

|ż(s)| ds

≲ (1 + δasymp) 1
r0

ˆ t

0

1
r2
T (s)

(︄
−
ˆ
Ī

z,T (s)

⃓⃓⃓
ρ(·, s; z, T )

⃓⃓⃓2
dH1

)︄ 1
2

ds

≲ (1 + δasymp) 1
r0

ˆ t

0

1
r

3/2
T (s)

(︄ ˆ
Ī

z,T (s)

(︃
ρ(·, s; z, T )
rT (s)

)︃2
dH1

)︄ 1
2

ds.

(4.125)

Inserting the estimate (4.125) into (4.124) and afterward exploiting the assumption (4.85)
further entails

1
r0

|z(t)| ≲ δerr

√︄
1
r0
E[χ0|χ̄0]

ˆ t

0

1
r2
T (s)

(︃
rT (s)
r0

)︃ 1
2
ds,

where δerr ≃ δ(1 + δasymp), which in turn by (4.66) upgrades to

1
r0

|z(t)| ≲ δerr

√︄
1
r0
E[χ0|χ̄0]

ˆ t

0

1
r2
T (s)

(︃
rT (s)
r0

)︃ 1
2(︂

1+Ṫ(s)) ds

≲ −δerr

√︄
1
r0
E[χ0|χ̄0]

ˆ t

0

d

ds

(︃
rT (s)
r0

)︃ 1
2
ds

≲ δerr

√︄
1
r0
E[χ0|χ̄0]

(︄
1 −

(︃
rT (t)
r0

)︃ 1
2
)︄
.

Now, choosing δerr ≪ 1 (hence δ, δasymp ≪ 1) such that the implicit constant in the last
estimate gets canceled, we obtain the claim for the path of translations z. Analogously, one
derives a bound of same type for 1

Text
|T(t)|.

4.6 Reduction to perturbative graph setting
4.6.1 Proof of Proposition 57: Reduction to graph setting
The proof of Proposition 57 is still work in progress and its details will be included in a
future version of the work [47]. We expect the statement of Proposition 57 to follow from
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an application of the Allard Regularity Theorem [117, Theorem 5.2]. Then, one can deduce
the H2 regularity (4.73) from the hypothesis (4.71), the weak definition of Vi,j (cf. [46,
Definition 13, (17c)]), in particular (4.153), and the bounds (4.75)-(4.76).

4.6.2 Proof of Lemma 58: Error functionals in perturbative regime
The estimates (4.78) follow directly from (4.156), (4.56), (4.142) as well as (4.75), whereas
the estimates (4.79) are immediate consequences of (4.155), (4.55), (4.140), (4.150) as well
as (4.75)–(4.76).

4.7 Auxiliary computations in perturbative regime
Let (ξ, ϑ, B) be the maps from Construction 55, and let (tχ, z, T ) be the space-time shifts from
Lemma 54. Fix t ∈ (0, tχ) and assume the existence of an height function h(·, t) satisfying
the properties as in the conclusions of Proposition 57. For ease of notation, we will drop in
the following any dependence on the time t. Furthermore, we will abbreviate in the tubular
neighborhood {dist(·, Īz,T ) < rT/2}

s
Ī

z,T := sdist
Ī

z,T ,

n̄
Ī

z,T := n
Ī

z,T ◦ P
Ī

z,T , τ̄
Ī

z,T := τ
Ī

z,T ◦ P
Ī

z,T ,

H̄
Ī

z,T := H
Ī

z,T ◦ P
Ī

z,T .

Finally, define I := I1,P , which is by assumption subject to the graph representation (4.73)–
(4.76), and denote V := V1, n := nP,1 as well as, by slight abuse of notation, χ := χ1 and
χ̄ := χ̄1.
We claim that for given δerr ∈ (0, 1), one may choose the constants C,C ′ ≫δerr 1 from (4.75)–
(4.76) such that the individual elements of the stability estimates (4.58) and (4.59) are
estimated as follows:

−
ˆ
I

(︂
∂tξ

z,T+(Bz,T · ∇)ξz,T+(∇Bz,T )Tξz,T
)︂

· (n−ξz,T ) dH1

≤ −
ˆ
Ī

z,T
H2
Ī

z,Th(n
Ī

z,T · ż) dH1 (4.126)

−
ˆ
Ī

z,T
H ′
Ī

z,T (τ
Ī

z,T · ż)h dH1 −
ˆ
Ī

z,T
H ′
Ī

z,T Ṫh′ dH1

+
ˆ
Ī

z,T
δerr

(︃ 1
rT

⃓⃓⃓
(τ
Ī

z,T · ż)h′
⃓⃓⃓
+
⃓⃓⃓
H ′
Ī

z,T Ṫh′
⃓⃓⃓)︃
dH1,

−
ˆ
I

(︂
∂tξ

z,T+(Bz,T · ∇)ξz,T
)︂

· ξz,T dH1 = 0, (4.127)
ˆ
I

1
2
⃓⃓⃓
∇ · ξz,T+Bz,T · ξz,T

⃓⃓⃓2
dH1

≤
ˆ
Ī

z,T

1
2H

4
Ī

z,Th2 + δerr
1
r4
T

h2 dH1, (4.128)

−
ˆ
I

1
2
⃓⃓⃓
Bz,T · ξz,T

⃓⃓⃓(︂
1 − |ξz,T |2

)︂
dH1 = 0, (4.129)

−
ˆ
I

(1 − n · ξz,T )∇ · ξz,T (Bz,T · ξz,T ) dH1
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≤
ˆ
Ī

z,T

1
2H

2
Ī

z,T (h′)2 + δerr
1
r2
T

(h′)2 dH1, (4.130)
ˆ
I

(︂
(Id−ξz,T ⊗ ξz,T )Bz,T

)︂
· (V+∇ · ξz,T )n dH1 = 0, (4.131)

ˆ
I

(1 − n · ξz,T )∇ · Bz,T dH1

≤ −
ˆ
Ī

z,T

1
2H

2
Ī

z,T (h′)2 dH1 +
ˆ
Ī

z,T
δerr

1
r2
T

(h′)2 dH1, (4.132)

−
ˆ
I

(n−ξz,T ) ⊗ (n−ξz,T ) : ∇Bz,T dH1

≤
ˆ
Ī

z,T
H2
Ī

z,T (h′)2 dH1 +
ˆ
Ī

z,T
δerr

(︃ 1
r2
T

+
⃓⃓⃓
H ′
Ī

z,T

⃓⃓⃓)︃
(h′)2 dH1, (4.133)

−
ˆ
I

1
2
⃓⃓⃓
V+∇ · ξz,T

⃓⃓⃓2
dH1

≤ −
ˆ
Ī

z,T

1
2(h′′)2 dH1 (4.134)

+
ˆ
Ī

z,T
δerr

(︃
(h′′)2 + 1

r2
T

(h′)2 +
(︃

(H ′
Ī

z,T )2+ 1
r4
T

)︃
h2
)︃
dH1

−
ˆ
I

1
2
⃓⃓⃓
V n−(Bz,T · ξz,T )ξz,T

⃓⃓⃓2
dH1

≤ −
ˆ
Ī

z,T

1
2

(︃
(h′′)2 +H4

Ī
z,Th2 −H2

Ī
z,T (h′)2

)︃
dH1 (4.135)

+
ˆ
Ī

z,T
2H

Ī
z,TH ′

Ī
z,Thh′ dH1

+
ˆ
Ī

z,T
δerr

(︃
(h′′)2 + 1

r2
T

(h′)2 +
(︃

(H ′
Ī

z,T )2+ 1
r4
T

)︃
h2
)︃
dH1,

ˆ
I

ϑz,T (Bz,T · ξz,T−V ) dH1

≤
ˆ
Ī

z,T

H2
Ī

z,T

r2
T

h2 dH1 −
ˆ
Ī

z,T

1
r2
T

(h′)2 dH1 (4.136)

+
ˆ
Ī

z,T
δerr

(︃
(h′′)2 + 1

r2
T

(h′)2 +
(︃

(H ′
Ī

z,T )2+ 1
r4
T

)︃
h2
)︃
dH1,

ˆ
I

ϑz,TBz,T · (n − ξz,T ) dH1

≤
ˆ
Ī

z,T
δerr

(︃ 1
r4
T

h2 + 1
r2
T

(h′)2
)︃
dH1, (4.137)

ˆ
R2

(χ−χ̄z,T )ϑz,T∇ · Bz,T dx

≤ −
ˆ
Ī

z,T

1
2
H2
Ī

z,T

r2
T

h2 dH1 +
ˆ
Ī

z,T
δerr

1
r4
T

h2 dH1, (4.138)
ˆ
R2

(χ−χ̄z,T )
(︂
∂tϑ

z,T+(Bz,T · ∇)ϑz,T
)︂
dx

≤
ˆ
Ī

z,T

1
r4
T

h2 dH1 (4.139)
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−
ˆ
Ī

z,T

1
r2
T

H
Ī

z,ThṪ dH1 −
ˆ
Ī

z,T

1
r2
T

h(n
Ī

z,T · ż) dH1

+
ˆ
Ī

z,T
δerr

(︄
1
r3
T

⃓⃓⃓
Ṫh
⃓⃓⃓
+ 1
r2
T

⃓⃓⃓
(n

Ī
z,T · ż)h

⃓⃓⃓
+ 1
r4
T

h2
)︄
dH1.

Proof of (4.126)–(4.139). We proceed in several steps.
Step 1: Properties of gradient flow calibration. Thanks to (4.75), the definitions (4.67)–(4.69),
and the identities (4.17)–(4.19), it holds on I ⊂ {dist(·, Īz,T ) < rT/8}

ξz,T = n̄
Ī

z,T = ∇s
Ī

z,T , (4.140)
Bz,T = H̄

Ī
z,T n̄

Ī
z,T , (4.141)

ϑz,T = −
s
Ī

z,T

r2
T

. (4.142)

In particular, because of

∇P
Ī

z,T = Id −n̄
Ī

z,T ⊗ n̄
Ī

z,T − s
Ī

z,T ∇n̄
Ī

z,T ,

we obtain by direct computation throughout {dist(·, Īz,T ) < rT/4}

∇ξz,T = −
H̄
Ī

z,T

1 − H̄
Ī

z,T s
Ī

z,T

τ̄
Ī

z,T ⊗ τ̄
Ī

z,T , (4.143)

∇ · ξz,T = −
H̄
Ī

z,T

1 − H̄
Ī

z,T s
Ī

z,T

, (4.144)

∇Bz,T = − H̄
2
Ī

z,T

1 − H̄
Ī

z,T s
Ī

z,T

τ̄
Ī

z,T ⊗ τ̄
Ī

z,T + H̄
′
Ī

z,T

1 − H̄
Ī

z,T s
Ī

z,T

n̄
Ī

z,T ⊗ τ̄
Ī

z,T , (4.145)

∇ · Bz,T = − H̄
2
Ī

z,T

1 − H̄
Ī

z,T s
Ī

z,T

, (4.146)

∇ϑz,T = − 1
r2
T

n̄
Ī

z,T . (4.147)

Note that these computations are justified thanks to |1−H̄
Ī

z,T s
Ī

z,T | ≥ 1/2 being valid
throughout {dist(·, Īz,T ) < rT/4}, which in turn follows from H̄

Ī
z,T ≤ 2/rT since, by

assumption, rT/2 is an admissible tubular neighborhood width for Īz,T (cf. Definition 50).
Within {dist(·, Īz,T ) < rT/4}, we also record the following simplifications of (4.96) and (4.98):

∂tξ
z,T = −

(︂
1+Ṫ

)︂ H ′
Ī

z,T ◦ P
Ī

z,T

1 − H̄
Ī

z,T s
Ī

z,T

τ̄
Ī

z,T +
(︂
τ̄
Ī

z,T · ż
)︂ H̄

Ī
z,T

1 − H̄
Ī

z,T s
Ī

z,T

τ̄
Ī

z,T , (4.148)

∂tϑ
z,T = −1+Ṫ

r2
T

(︃
2
s
Ī

z,T

r2
T

− H̄
Ī

z,T

)︃
+

n̄
Ī

z,T · ż
r2
T

. (4.149)

Step 2: Identities for geometric quantities of perturbed interface. First, we define (h, h′, h′′) :=
(h, h′, h′′) ◦ P

Ī
z,T . Then, denoting by o(1) any continuous function f(H̄

Ī
z,T h, h′) such that

f(H̄
Ī

z,T h, h′) → 0 whenever |H̄
Ī

z,T h| → 0 and |h′| → 0, we claim that along I

n =
(︄

1 +
(︃

− 1
2 + o(1)

)︃
(h′)2

)︄
n̄
Ī

z,T −
(︂
1+o(1)

)︂
h′τ̄

Ī
z,T , (4.150)
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V =
H̄
Ī

z,T

1 − H̄
Ī

z,T h
+ h′′ + o(1)h′′ + o(1)h′H̄

Ī
z,T + o(1)hH̄ ′

Ī
z,T . (4.151)

For a proof of (4.150)–(4.151), it is computationally convenient to represent the interface I
as the image of the curve γh := (id + hn̄

Ī
z,T ) ◦ γ̄z,T , where γ̄ is an arc-length parametrization

of Ī(T−1(t)) such that τ̄
Ī

z,T ◦ γ̄z,T = (γ̄z,T )′. Then

γ′
h =

(︄(︂
1−H̄

Ī
z,Th

)︂
τ̄
Ī

z,T + h′n̄
Ī

z,T

)︄
◦ γ̄z,T , (4.152)

hence (recall that J ∈ R2×2 denotes counter-clockwise rotation by 90◦)

nγh
= J

γ′
h

|γ′
h|

=
(︄(︂1−H̄

Ī
z,Th

)︂
n̄
Ī

z,T − h′τ̄
Ī

z,T√︃(︂
1−H̄

Ī
z,Th

)︂2
+ (h′)2

)︄
◦ γ̄z,T , (4.153)

so that (4.150) follows from Taylor expansion. By virtue of H2 regularity of the height
function h and V being the distributional curvature of I due to [46, Definition 13, item iii)]
and χi ≡ 0 for all i /∈ {1, P}, we deduce V = Hγh

. In other words,

V ◦ γh = γ′′
h · Jγ′

h

|γ′
h|3

=
(︄
h′
(︂
H̄

′
Ī

z,Th+ 2H̄
Ī

z,Th′
)︂

+ (1−H̄
Ī

z,Th)
(︂
h′′ + H̄

Ī
z,T (1−H̄

Ī
z,Th)

)︂
√︃(︂

1−H̄
Ī

z,Th
)︂2

+ (h′)2
3

)︄
◦ γ̄z,T ,

(4.154)
so that (4.151) again follows from Taylor expansion.
Step 3: Change of variables formula. Let g : I → R be integrable. Then, by the coarea
formula ˆ

I

g dH1 =
ˆ
Ī

z,T
g ◦ (id+hn

Ī
z,T )

√︃(︂
1−H

Ī
z,Th

)︂2
+ (h′)2 dH1. (4.155)

Furthermore, since the Jacobian of the tubular neighborhood diffeomorphism x ↦→ (P
Ī

z,T (x), s
Ī

z,T )
is given by 1/(1−H̄

Ī
z,T s

Ī
z,T ), we also obtain for any integrable G : R2 → R with suppG ⊂

{dist(·, Īz,T ) < rT/4} by the area formula
ˆ
R2

(χ− χ̄z,T )Gdx = −
ˆ
Ī

z,T

ˆ h

0

G
(︂
x+sn̄

Ī
z,T (x)

)︂
1−H̄

Ī
z,T (x)s

dsdH1(x). (4.156)

Step 4: Collecting further auxiliary identities. We obtain from (4.150) and (4.140) that,
along I,

n − ξz,T = o(1)h′n̄
Ī

z,T −
(︂
1+o(1)

)︂
h′τ̄

Ī
z,T , (4.157)

1 − n · ξz,T =
(︃1

2 + o(1)
)︃

(h′)2. (4.158)

In addition, we infer from (4.151) and (4.144) that, along I,

V + ∇ · ξz,T = h′′ + o(1)h′′ + o(1)h′H̄
Ī

z,T + o(1)hH̄ ′
Ī

z,T , (4.159)
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as well as from (4.150), (4.151) and (4.140)–(4.141)

V n − (Bz,T · ξz,T )ξz,T

=
(︂
H̄

2
Ī

z,T h+h′′
)︂
n̄
Ī

z,T − H̄
Ī

z,T h′τ̄
Ī

z,T

+
(︂
o(1)h′′ + o(1)H̄

Ī
z,T h′ + o(1)(H̄ ′

Ī
z,T ◦ P

Ī
z,T )h + o(1)H̄2

Ī
z,T h

)︂
n̄
Ī

z,T

+
(︂
o(1)h′′ + o(1)H̄

Ī
z,T h′ + o(1)(H̄ ′

Ī
z,T ◦ P

Ī
z,T )h + o(1)H̄2

Ī
z,T h

)︂
τ̄
Ī

z,T

(4.160)

and

B · ξ − V = −H̄2
Ī

z,T h − h′′ + o(1)h′′ + o(1)h′H̄
Ī

z,T + o(1)hH̄ ′
Ī

z,T + o(1)hH̄2
Ī

z,T . (4.161)

Next, we exploit the information gathered so far to express the terms originating from the
stability estimate of Eint in terms of the height function h (and its derivatives). First, we get
from combining (4.155), (4.148), (4.140)–(4.141), (4.143), (4.145) and (4.157),

−
ˆ
I

(︂
∂tξ

z,T+(Bz,T · ∇)ξz,T+(∇Bz,T )Tξz,T
)︂

· (n−ξz,T ) dH1

≤
ˆ
Ī

z,T
H
Ī

z,Th′(τ
Ī

z,T · ż) dH1 −
ˆ
Ī

z,T
H ′
Ī

z,T Ṫh′ dH1

+
ˆ
Ī

z,T
|o(1)|

(︃⃓⃓⃓
H
Ī

z,T (τ
Ī

z,T · ż)h′
⃓⃓⃓
+
⃓⃓⃓
H ′
Ī

z,T Ṫh′
⃓⃓⃓)︃
dH1

= −
ˆ
Ī

z,T
H2
Ī

z,Th(n
Ī

z,T · ż) dH1

−
ˆ
Ī

z,T
H ′
Ī

z,T (τ
Ī

z,T · ż)h dH1 −
ˆ
Ī

z,T
H ′
Ī

z,T Ṫh′ dH1

+
ˆ
Ī

z,T
|o(1)|

(︃⃓⃓⃓
H
Ī

z,T (τ
Ī

z,T · ż)h′
⃓⃓⃓
+
⃓⃓⃓
H ′
Ī

z,T Ṫh′
⃓⃓⃓)︃
dH1,

(4.162)

where in the last step we also integrated by parts. Next, it directly follows from (4.155),
(4.140)–(4.141) and (4.144)ˆ

I

1
2
⃓⃓⃓
∇ · ξz,T+Bz,T · ξz,T

⃓⃓⃓2
dH1 ≤

ˆ
Ī

z,T

(︂
1+|o(1)|

)︂1
2H

4
Ī

z,Th2 dH1, (4.163)

and exploiting in addition (4.158)

−
ˆ
I

(1 − n · ξz,T )∇ · ξz,T (Bz,T · ξz,T ) dH1

≤
ˆ
Ī

z,T

(︂
1+|o(1)|

)︂1
2H

2
Ī

z,T (h′)2 dH1.

(4.164)

Analogously, recalling also (4.145) and (4.146),ˆ
I

(1 − n · ξz,T )∇ · Bz,T dH1 ≤ −
ˆ
Ī

z,T

(︂
1−|o(1)|

)︂1
2H

2
Ī

z,T (h′)2 dH1 (4.165)

as well as

−
ˆ
I

(n−ξz,T ) ⊗ (n−ξz,T ) : ∇Bz,T dH1

≤
ˆ
Ī

z,T

(︂
1+|o(1)|

)︂
H2
Ī

z,T (h′)2 dH1 +
ˆ
Ī

z,T
|o(1)|

⃓⃓⃓
H ′
Ī

z,T

⃓⃓⃓
(h′)2 dH1.

(4.166)
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Just plugging in (4.159) and estimating by Young’s inequality yields

−
ˆ
I

1
2
⃓⃓⃓
V+∇ · ξz,T

⃓⃓⃓2
dH1

≤ −
ˆ
Ī

z,T

(︂
1−|o(1)|

)︂1
2(h′′)2 dH1

+
ˆ
Ī

z,T
|o(1)|

(︃
H2
Ī

z,T (h′)2 +
(︂
(H ′

Ī
z,T )2+H4

Ī
z,T

)︂
h2
)︃
dH1,

(4.167)

and analogously based on (4.160)

−
ˆ
I

1
2
⃓⃓⃓
V−(Bz,T · ξz,T )ξz,T

⃓⃓⃓2
dH1

≤ −
ˆ
Ī

z,T

(︂
1−|o(1)|

)︂1
2

(︃
(h′′)2 +H2

Ī
z,T (h′)2 +H4

Ī
z,Th2

)︃
dH1

−
ˆ
Ī

z,T
H2
Ī

z,Thh′′ dH1

+
ˆ
Ī

z,T
|o(1)|(H ′

Ī
z,T )2h2 dH1

≤ −
ˆ
Ī

z,T

(︂
1−|o(1)|

)︂1
2

(︃
(h′′)2 +H4

Ī
z,Th2

)︃
dH1

+
ˆ
Ī

z,T

1
2H

2
Ī

z,T (h′)2 dH1

+
ˆ
Ī

z,T
2H

Ī
z,TH ′

Ī
z,Thh′ dH1

+
ˆ
Ī

z,T
|o(1)|

(︃
H2
Ī

z,T (h′)2 + (H ′
Ī

z,T )2h2
)︃
dH1,

(4.168)

where in the last step we also carried out an integration by parts and estimated by Young’s
inequality.
We continue with the terms originating from the stability estimate of Ebulk. First, by means
of (4.155), (4.142), (4.161) and an integration by parts we obtain

ˆ
I

ϑz,T (Bz,T · ξz,T−V ) dH1

≤
ˆ
Ī

z,T

H2
Ī

z,T

r2
T

h2 dH1 −
ˆ
Ī

z,T

1
r2
T

(h′)2 dH1

+
ˆ
Ī

z,T
|o(1)|

(︄(︃H2
Ī

z,T

r2
T

+ 1
r4
T

+(H ′
Ī

z,T )2
)︃
h2 +H2

Ī
z,T (h′)2 + (h′′)2

)︄
dH1.

(4.169)

Next, just plugging in (4.141)–(4.142) and (4.157) into (4.155) and applying Young’s inequality
entails ˆ

I

ϑz,TBz,T · (n − ξz,T ) dH1 ≤
ˆ
Ī

z,T
|o(1)|

(︃ 1
r4
T

h2 +H2
Ī

z,T (h′)2
)︃
dH1. (4.170)

In addition, based on (4.156), (4.142) and (4.146), we may infer
ˆ
R2

(χ−χ̄z,T )ϑz,T∇ · Bz,T dx ≤ −
ˆ
Ī

z,T

(︂
1−|o(1)|

)︂1
2
H2
Ī

z,T

r2
T

h2 dH1, (4.171)
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whereas it finally follows from (4.156), (4.149), (4.141) and (4.147)
ˆ
R2

(χ−χ̄z,T )
(︂
∂tϑ

z,T+(Bz,T · ∇)ϑz,T
)︂
dx

≤
ˆ
Ī

z,T

1
r4
T

h2 dH1 −
ˆ
Ī

z,T

H
Ī

z,T

r2
T

hṪ dH1 −
ˆ
Ī

z,T

1
r2
T

h(n
Ī

z,T · ż) dH1

+
ˆ
Ī

z,T
|o(1)|

(︄
1
r3
T

⃓⃓⃓
Ṫh
⃓⃓⃓
+ 1
r2
T

⃓⃓⃓
H
Ī

z,T Ṫh
⃓⃓⃓
+ 1
r2
T

⃓⃓⃓
(n

Ī
z,T · ż)h

⃓⃓⃓
+ 1
r4
T

h2
)︄
dH1.

(4.172)

Step 5: Conclusion. Due to (4.140) and (4.141), the identities (4.127), (4.129) and (4.131)
hold true for trivial reasons. The remaining estimates follow from (4.162)–(4.172) and
|H

Ī
z,T | ≤ 2/rT .
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CHAPTER 5
Weighted Inertia-Dissipation-Energy

approach to doubly nonlinear wave
equations

Abstract. We discuss a variational approach to doubly nonlinear wave equations of the form
ρ∂2

t u+ g(∂tu) − ∆u+ f(u) = 0. This approach hinges on the minimization of a parameter-
dependent family of uniformly convex functionals over entire trajectories, the so-called Weighted
Inertia-Dissipation-Energy (WIDE) functionals. We prove that the WIDE functionals admit
minimizers and that the corresponding Euler-Lagrange system is solvable in the strong sense.
Moreover, we check that the parameter-dependent minimizers converge, up to subsequences,
to a solution of the target doubly nonlinear wave equation as the parameter goes to 0. The
analysis relies on specific estimates on the WIDE minimizers, on the decomposition of the
subdifferential of the WIDE functional, and on the identification of the nonlinearities in the
limit. Eventually, we investigate the viscous limit ρ → 0, both at the functional level and on
that of the equation.

5.1 Introduction
Semilinear wave equations of the form ρ∂2

t u − ∆u + f(u) = 0 in the space-time domain
Ω × (0, T ) with Ω ⊂ Rd, ρ > 0, and f = F ′ monotone can be addressed variationally by
considering minimizers of the global-in-time functionals

u ↦→
ˆ T

0

ˆ
Ω

e−t/ε
(︄
ε2ρ

2 |∂2
t u|2 + 1

2 |∇u|2 + F (u)
)︄

dx dt

under given initial and boundary conditions. Indeed, minimizers uε of the latter converge up to
subsequences to solutions of the semilinear wave equation as ε → 0. This is the content of a
celebrated conjecture by De Giorgi on the variational resolution of hyperbolic problems, which
was proved in [120] for T < ∞ and in [109] for its original formulation with T = ∞. The
interest in this possibility relies in reformulating the differential problem in terms of a uniformly
convex minimization problem, combined with a limit passage. This ultimately delivers a novel
approximation methodology for nonlinear wave equations.
Starting from this first positive results, the reach of the De Giorgi conjecture has been extended
to other classes of nonlinear hyperbolic problems [110]. These include nonhomogeneous forcing
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terms [123, 124], general mechanical systems [77], and time-dependent domains [87]. The
aim of this paper is to consider the extension of the variational approach to the case of a
nonlinearly damped wave equation of the form

ρ∂2
t u+ g(∂tu) − ∆u+ f(u) = 0. (5.1)

In addition to the nonlinearity f(u) on u, the latter equation features a second nonlinear
dissipation term g(∂tu) with g monotone, making it a doubly nonlinear wave equation.
Correspondingly, the global-in-time functionals take the form

Iρε : u ↦→
ˆ T

0

ˆ
Ω

e−t/ε
(︄
ε2ρ

2 |∂2
t u|2 + εG(∂tu) + 1

2 |∇u|2 + F (u)
)︄

dx dt

where G′ = g. These functionals feature the weighted sum (via the exponential weight
t ↦→ e−t/ε and powers of the parameter ε) of an inertial term ρ|∂2

t u|2/2, a dissipation term
G(∂tu), and an energy term F (u). These global-in-time functionals are hence usually referred
to as being of Weighted Inertia-Dissipation-Energy (WIDE) type. Correspondingly, the above-
mentioned variational approximation strategy of minimizing the WIDE functionals and then
passing to the limit ε → 0 is called the WIDE approach. The relation between the minimization
of Iρε and the solution to (5.1) is revealed by computing the Euler-Lagrange equation for Iρε.
Postponing all necessary details to the coming sections, we anticipate that it takes the form
of the following fourth-order elliptic-in-time equation

ε2ρ∂4
t u− 2ερ∂3

t u+ ρ∂2
t u− ε∂t(g(∂tu)) + g(∂tu) − ∆u+ f(u) = 0. (5.2)

In particular, by formally taking the limit ε → 0 one recovers the doubly nonlinear equation
(5.1). The minimization of Iρε hence corresponds to an elliptic-in-time regularization of (5.1).
Note that the Euler-Lagrange equation (5.2) is not causal, as its solution uε at a given time t
depends on its values on the interval (t, T ) as well. Causality is restored in the limit ε → 0,
which is hence referred to as causal limit in this context.
The WIDE approach for (5.1) has already been investigated for quadratic ψ. In this case, the
resulting limiting problem (5.1) is a linearly damped semilinear wave equation. The amenability
of this variational approximation procedure has been ascertained both in the case T < ∞ [78]
and for T = ∞ [110]. In taking the limit ε → 0, the linearity of the dissipation term g(∂tu) is
crucially used in [78, 110]. In particular, the identification of the nonlinearity f(u) follows by
compactness.
The focus of this paper is in extending the WIDE theory to the genuinely doubly nonlinear
setting by letting G be not quadratic. We assume G to be convex and of p-growth, for some
2 ≤ p < 4. This calls for a number of delicate extensions of the available arguments. First,
the problem will be abstractly reformulated in Banach spaces, as opposed to the Hilbertian
formulations of [78, 110]. Secondly, in passing to the limit as ε → 0 one needs to identify
two limits. Compactness will still enable to identify the limit in f(u). For the identification
of g(∂tu) one uses a lower semicontinuity argument instead. This is challenging due to the
hyperbolic nature of the problem. At this point, let us refer to [33], where the case of a
positively 1-homogeneous ψ (but with f = 0) has been considered in the context of dynamic
plasticity, with the help of tools for rate-independent flows [91].
Our first main result is the amenability of the WIDE approach in this doubly nonlinear
hyperbolic setting. Theorem 68 states that, under suitable assumptions, the functionals Iρε
admit unique minimizers uε, that they are strong solutions of the Euler-Lagrange equation
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(5.2), and that uε converge to solutions of the doubly nonlinear wave equation (5.1) as ε → 0,
up to subsequences.
We then turn to the investigation of the so-called viscous limit ρ → 0. This can be alternatively
discussed at the level of the functionals Iρε or at the level of their minimizers, which we now
indicate with uρε. Theorem 69 states that one can take any limit (ρ, ε) → (ρ0, ε0) and prove
the convergence of the respective trajectories uρε to the limiting one uρ0ε0 . In particular, for
(ρ, ε) → (0, 0) the minimizers uρε converge to the unique solution of the doubly nonlinear flow
g(∂tu) − ∆u+ f(u) = 0.
Before closing this introduction, let us mention the literature related to the parabolic version
of the WIDE approach. In fact, elliptic-regularization nonvariational techniques for nonlinear
parabolic PDEs are classical and can be traced back to Lions [80], see also Kohn & Nirenberg
[69], Olein̆ik [97], and the book by Lions & Magenes [81]. An early result in a nonlinear setting
is by Barbu [16].
The WIDE approach in the parabolic setting has been pioneered by Ilmanen [63], for the mean
curvature flow of varifolds, and Hirano [60], for periodic solutions of gradient flows. Note that
WIDE functionals are mentioned in the classical textbook by Evans [39, Problem 3, p. 487].
A variety of different parabolic abstract problems have been tackeld by the WIDE approach,
including gradient flows [10, 19, 93], rate-independent flows [90, 92], doubly-nonlinear flows
[6, 7, 8, 9, 88], nonpotential perturbations [5, 89] and variational approximations [76], curves
of maximal slope in metric spaces [102, 103, 108], and parabolic SPDEs [105]. On the more
applied side, the WIDE approach has been applied to microstructure evolution [31], crack
propagation [71], mean curvature flow [63, 119], dynamic plasticity [33], and the incompressible
Navier-Stokes system [17, 98].
The plan of this chapter is the following. We formulate the problem in abstract spaces,
collect assumptions, and formulate our main results, Theorems 68-69 in Section 5.2. After
collecting some preliminary material in Section 5.3, we prove the existence of a solution to the
Euler-Lagrange problem in Section 5.4. This calls for an approximation of the WIDE functionals
based on the Moreau-Yosida regularization, the characterization of their subdifferential, and
a limiting procedure with respect to the approximation parameter. We eventually prove in
Subsection 5.4.6 that the WIDE functional admits minimizers. The passage to the causal limit
ε → 0 is detailed in Section 5.5. Eventually, the viscous limit ρ → 0 and its combination with
the causal limit ε → 0 are discussed in Section 5.6.

5.2 Assumptions and main results
In this section, we present an abstract formulation for the doubly nonlinear wave equation
(5.1) and state our main results Theorems 68 and 69. Let us start by fixing some assumptions,
which will hold throughout the paper.
Let d ∈ {2, 3} and Ω ⊂ Rd be a nonempty, open, bounded, and Lipschitz domain and
V ≡ Lp(Ω) for 2 ≤ p < 4. Moreover, let X ≡ H1

0 (Ω), so that X ⊂ V densely and compactly.
We indicate by V ∗ and X∗ the dual spaces, by ⟨·, ·⟩V and ⟨·, ·⟩X the corresponding duality
pairings. Finally, in the following we denote by u′ the time-derivative ∂tu.
We are concerned with the analysis of WIDE approach to the abstract nonlinear hyperbolic
Cauchy problem defined as

ρu′′ + ξ(t) + η(t) = 0 in V ∗ for a.e. t ∈ (0, T ), (5.3)
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ξ(t) = dV ψ(u′(t)) in V ∗ for a.e. t ∈ (0, T ), (5.4)
η(t) ∈ ∂ϕ(u(t)) in V ∗ for a.e. t ∈ (0, T ), (5.5)
u(0) = u0, (5.6)
ρu′(0) = ρu1. (5.7)

Here, T > 0 is some reference final time, the prime denotes time differentiation, and ρ is a
positive parameter (ρ → 0 will be considered in Section 5.6 below). The convex functionals
ψ, ϕ : V → [0,∞) are given as

ψ(v) =

⎧⎪⎨⎪⎩
ˆ

Ω
G(v) dx if G ◦ v ∈ L1(Ω),

∞ otherwise,
(5.8)

ϕ(u) =
ˆ

Ω

(︃1
2 |∇u|2 + F (u)

)︃
dx ∀u ∈ V. (5.9)

We denote by dV the Gâteaux derivative and by ∂ the subdifferential in the sense of convex
analysis. Finally, u0 ∈ X and u1 ∈ X ∩ Lq

′(Ω) are given initial data, where q′ = 2p/(4 − p).
The WIDE approach to the Cauchy problem (5.3)-(5.7) consists in defining the parameter-
dependent family of WIDE functionals Iρε : Lp(0, T ;V ) → (−∞,∞] over entire trajectories
as

Iρε(u) =

⎧⎪⎨⎪⎩
ˆ T

0
e−t/ε

(︃
ε2ρ

2

ˆ
Ω

|u′′(t)|2 dx+ εψ(u′(t)) + ϕ(u(t))
)︃

dt if u ∈ K(u0, u1),
∞ else,

(5.10)

where we let

K(u0, u1) = {u ∈ H2(0, T ;L2(Ω)) ∩W 1,p(0, T ;Lp(Ω)) ∩ L2(0, T ;H1
0 (Ω)) :

u(0) = u0, ρu
′(0) = ρu1}.

In the following, we assume ψ : V → [0,∞) to be twice Gateaux differentiable, convex, and of
p-growth. In particular, we assume that there exists a constant C1 > 0 such that the following
conditions hold

|u|pV ≤ C1(ψ(u) + 1) , ∀u ∈ V , ψ(0) = 0; (5.11)
|dV ψ(u)|p

′

V ∗ ≤ C1(|u|pV + 1) , ∀u ∈ V , p′ = p/(p− 1) ; (5.12)
| Hes(ψ(u))|p

′′

Lp′′ (Ω) ≤ C1(|u|pV + 1) , ∀u ∈ V , p′′ = p/(p− 2), for p > 2; (5.13)
| Hes(ψ(u))|L∞(Ω) ≤ C1 , ∀u ∈ V , for p = 2. (5.14)

As a consequence, there exists a constant C2 > 0 such that

|u|pV ≤ C2(⟨dV ψ(u), u⟩V + 1) ∀u ∈ V , (5.15)
ψ(u) ≤ ψ(0) + ⟨dV ψ(u), u⟩V ≤ C2 (|u|pV + 1) ∀u ∈ V . (5.16)

We assume F ∈ C1(R) to be convex and f = F ′ ∈ C(R) to have polynomial growth of order
r − 1, for r ∈ [1, p]. In particular, we ask for some constant C3 > 0 such that

1
C3

|v|r ≤ F (v) + C3 and |f(v)|r′ ≤ C3(1 + |v|r) for all v ∈ R, (5.17)
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where 1/r + 1/r′ = 1. The growth assumptions in (5.17) imply that F has at most r-growth.
We indicate by ∂XϕX the subdifferential from X to X∗ of the restriction ϕX of ϕ to X.
Note that ∂XϕX is a single-valued. More precisely, we have η = ∂XϕX = −∆u + f(u) in
X∗. Furthermore, we can deduce the existence of a constant C4 > 0 such that the following
conditions hold:

D(ϕ) ⊂ X ; |u|2X ≤ C4(ϕ(u) + 1) ∀u ∈ D(ϕ), (5.18)
|η|X∗ ≤ C4(|u|X + |u|r−1

Lr(Ω) + 1) ∀η = ∂XϕX(u), (5.19)
|η|2X∗ ≤ C4(|u|2X + ℓ(|u|V ) + 1) ∀η = ∂XϕX(u), (5.20)

where ℓ is a nondecreasing function in R. Note that (5.19) requires that r ≤ 2∗, whereas
(5.20) requires that r ≤ p.

The Euler-Lagrange equation for Iρε under the constraints uε(0) = u0 and ρu′
ε(0) = ρu1 reads

ρε2u′′′′
ε − 2ρεu′′′

ε + ρu′′
ε − εξ′

ε + ξε + ηε = 0 in X∗, a.e. in (0, T ), (5.21)
ξε = dV ψ(u′

ε) in V ∗, a.e. in (0, T ), (5.22)
ηε = ∂XϕX(uε) in X∗, a.e. in (0, T ), (5.23)
uε(0) = u0, (5.24)
ρu′

ε(0) = ρu1, (5.25)
ρu′′

ε(T ) = 0, (5.26)
ερu′′′

ε (T ) − ξε(T ) = 0. (5.27)

In particular, the minimizers of the WIDE functionals uε solve a regularization of the target
problem (5.3)-(5.7).

Our first main result reads as follows.

Theorem 68 (WIDE variational approach). Assume (5.9)-(5.8), (5.11)-(5.14), and (5.17).
Then,

i) The WIDE functional Iρε admits a unique global minimizer uε ∈ K(u0, u1).

ii) For the unique minimizer uε of Iρε, by letting ξε = dV ψ(u′
ε) and ηε = ∂XϕX(uε), the

triple (uε, ξε, ηε) belongs to

[W 4,p′(0, T ;X∗) ∩H2(0, T ;L2(Ω)) ∩W 1,p(0, T ;V ) ∩ L2(0, T ;X)]
×W 1,p′(0, T ;X∗) × L2(0, T ;X∗),

and is a strong solution of the Euler-Lagrange problem (5.21)-(5.27). Moreover, the
global minimizer of Iρε and the strong solution of the Euler-Lagrange system coincide.

iii) For any sequence εk → 0, there exists a subsequence (denoted by the same symbol)
such that (uεk

, ξεk
, ηεk

) → (u, ξ, η) weakly in

[W 1,p(0, T ;V ) ∩ L2(0, T ;X)] × Lp
′(0, T ;V ∗) × L2(0, T ;X∗),

where (u, η, ξ) is a strong solution to the doubly nonlinear hyperbolic problem (5.3)-(5.7).
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5. WIDE approach to doubly nonlinear wave equations

Theorem 68.i-ii is proved in Section 5.4 by means of a regularization procedure whereas the
ε → 0 limit in Theorem 68.iii is obtained in Section 5.5.
Furthermore, we study the viscous limit for ρ → 0 of the doubly nonlinear hyperbolic problem
(5.3)-(5.7), recovering the doubly nonlinear parabolic problem studied in [8], namely

ξ(t) + η(t) = 0 in V ∗ for a.e. t ∈ (0, T ), (5.28)
ξ(t) = dV ψ(u′(t)) in V ∗ for a.e. t ∈ (0, T ), (5.29)
η(t) ∈ ∂ϕ(u(t)) in V ∗ for a.e. t ∈ (0, T ), (5.30)
u(0) = u0. (5.31)

In this regard, our results are the following:

Theorem 69 (Viscous limit). Assume (5.9)-(5.8), (5.11)-(5.14), and (5.17). Then,

i) The WIDE functionals Iρε Γ- converge as ρ → 0 with respect to the strong topology of
Lp(0, T ;V ) to

Īε(u) =

⎧⎪⎨⎪⎩
ˆ T

0
e−t/ε

(︃
εψ(u′(t)) + ϕ(u(t))

)︃
dt if u ∈ K̄(u0),

∞ else,

where

K̄(u0) = {W 1,p(0, T ;V ) ∩ L2(0, T ;X) : u(0) = u0}.

ii) Let (uρ, ξρ, ηρ) be a strong solution to the doubly nonlinear hyperbolic problem (5.3)-(5.7)
in

[W 1,p(0, T ;V ) ∩ L2(0, T ;X)] × Lp
′(0, T ;V ∗) × L2(0, T ;X∗).

For any sequence ρk → 0, there exists a subsequence (denoted by the same symbol)
such that (uρk

, ξρk
, ηρk

) → (ū, ξ̄, η̄) weakly∗ in

[W 1,p(0, T ;V ) ∩ L∞(0, T ;X)] × Lp
′(0, T ;V ∗) × L2(0, T ;X∗),

where (ū, ξ̄, η̄) is a strong solution to the doubly nonlinear parabolic problem (5.28)-
(5.31).

iii) Let (uερ, ξερ, ηερ) be a strong solution of the Euler-Langrange problem (5.21)-(5.27)
belonging to the regularity class of Theorem 68.ii. For any pair of sequences (εk, ρk) →
(0, 0), there exists a not relabeled subsequence such that (uεkρk

, ξεkρk
, ηεkρk

) → (ũ, ξ̃, η̃)
weakly in

[W 1,p(0, T ;V ) ∩ L2(0, T ;X)] × Lp
′(0, T ;V ∗) × L2(0, T ;X∗),

where (ũ, ξ̃, η̃) is a strong solution to the doubly nonlinear parabolic problem (5.28)-
(5.31).

Theorem 69 is proved in Section 5.6. More precisely, Theorem 69.i is obtained in Subsection
5.6.1, whereas the proof of Theorem 69.ii is given in Subsection 5.6.2. Eventually, Theorem
69.iii can be proved by combining the arguments of Sections 5.5-5.6.
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69.
iii

[8, Thm 5.1]

Figure 5.1: Theorems 68-69: illustration of the various limits with respect to ε and ρ.

5.3 Preliminary material
In this section, we present a tool for further use.

Lemma 70 (Weighted limsup tool). Let A : D(A) ⊂ V → 2V ∗ be a maximal monotone
operator. Let vε → v weakly in Lp(0, T ;V ) as ε → 0. Let wϵ(t) ∈ Avε(t) for almost every
t ∈ (0, T ) be such that wϵ → w weakly in Lp′(0, T ;V ∗) as ε → 0. Moreover, assume that
the following inequality holds

lim sup
ε→0

ˆ T

0
(T − t)⟨wε, vε⟩V dt ≤

ˆ T

0
(T − t)⟨w, v⟩V dt. (5.32)

Then, w(t) ∈ Av(t) for almost every t ∈ (0, T ).

Remark 71. Note that
ˆ T

0

ˆ t

0
f(s) ds dt =

ˆ T

0
(T − t)f(t) dt , for any f ∈ L1(0, T ).

As a consequence, assumption (5.32) of Lemma 70 is equivalent to

lim sup
ε→0

ˆ T

0

ˆ t

0
⟨wε, vε⟩V ds dt ≤

ˆ T

0

ˆ t

0
⟨w, v⟩V ds dt . (5.33)

Proof of Lemma 70. Fix t0 ∈ (0, T ). Let δ > 0 be such that t0 > δ and T − t0 > δ, and let
Bδ(t0) := (t0 − δ, t0 + δ). For any ṽ ∈ V and w̃ ∈ Aṽ, we define

v̂(t) :=
{︄
v(t) for t /∈ Bδ(t0),
ṽ for t ∈ Bδ(t0),

and
ŵ(t) :=

{︄
z(t) for t /∈ Bδ(t0),
w̃ for t ∈ Bδ(t0),

where z(t) ∈ Av(t).
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5. WIDE approach to doubly nonlinear wave equations

Using the monotonicity of A, (5.32) and the weak convergence properties of wε and of vε, we
deduce that

0 ≤ lim sup
ε→0

ˆ T

0
(T − t)⟨wε − ŵ, vε − v̂⟩V dt ≤

ˆ T

0
(T − t)⟨w − ŵ, v − v̂⟩V dt.

From the definition of v̂ we deduceˆ T

0
(T − t)⟨w − ŵ, v − v̂⟩V dt =

ˆ
Bδ(t0)

(T − t)⟨w − w̃, v − ṽ⟩V dt.

Since the left-hand side is nonnegative, it follows that

0 ≤ 1
2δ

ˆ
Bδ(t0)

(T − t)⟨w − w̃, v − ṽ⟩V dt,

where the integral in the right-hand side converges to (T − t0)⟨w(t0)− w̃, v(t0)− ṽ⟩V as δ → 0
for almost all t0 ∈ (0, T ), due to the Lebesgue Differentiation Theorem. As a consequence,
we obtain

⟨w(t0) − w̃, v(t0) − ṽ⟩V ≥ 0
for almost all t0 ∈ (0, T ). Finally, recalling that w̃ ∈ Aṽ, by using the maximal monotonicity
of A in V × V ∗, we can conclude that w(t) ∈ Av(t) for almost all t ∈ (0, T ).

5.4 Existence of solutions to the Euler-Lagrange problem
This section focuses on the solution of the Euler-Lagrange problem (5.21)-(5.27) and on the
minimization of the WIDE functionals. At first, we introduce some approximation of the
functionals in Subsection 5.4.1 and investigate their subdifferential in Subsection 5.4.2. These
approximated functionals admit minimizers. The corresponding Euler-Lagrange problem is
given in Subsection 5.4.3. We derive a priori estimate in Subsection 5.4.4 which allows to pass
to the limit in the approximation in Subsection 5.4.5 and find a solution to the Euler-Lagrange
problem (5.21)-(5.27). Eventually, such solutions are checked to correspond to minimizers of
the WIDE functionals in Subsection 5.4.6.

5.4.1 Approximating functional Iλ
ρε

Define the spaces

V = Lp(0, T ;V ) , W = H2(0, T ;L2(Ω)) ∩W 1,p(0, T ;V ) ,

and the approximating functional Iλρε : V → (−∞,∞] as

Iλρε(u) =

⎧⎪⎨⎪⎩
ˆ T

0
e−t/ε

(︃
ε2ρ

2 |u′′(t)|2L2(Ω) + εψ(u′(t)) + ϕλ(u)
)︃

dt if u ∈ Kλ(u0, u1),
∞ else,

(5.34)

Kλ(u0, u1) = {u ∈ W : u(0) = u0, ρu
′(0) = ρu1}.

Here, λ > 0 and ϕλ denotes the Moreau-Yosida regularization of ϕ, namely

ϕλ(u) := inf
v∈V

(︄
1
pλ

|u− v|pV + ϕ(v)
)︄

= 1
pλ

|u− Jλu|pV + ϕ(Jλu), (5.35)
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where Jλ is the p-resolvent of ∂V ϕλ at level λ, namely the solution operator Jλ : u ↦→ Jλu to

FV (u− Jλu) ∈ λ∂V ϕ(Jλu) in V ∗ , (5.36)

for any u ∈ V , where FV : V → V ∗ denotes the p-duality map between V and V ∗ (namely,
⟨FV (u), u⟩V = |u|pV = |FV (u)|p

′

V ∗ for any u ∈ V ). Recall that ∂ϕλ(u) := FV (u− Jλu)/λ. As

D(Iλρε) = Kλ(u0, u1),

Iλρε can be decomposed as

Iλρε = Īρε + Φελ, (5.37)

where the functionals Īρε,Φελ : V → [0,∞] are defined by

Īρε(u) =

⎧⎪⎨⎪⎩
ˆ T

0
e−t/ε

(︃
ε2ρ

2 |u′′(t)|2L2(Ω) + εψ(u′(t))
)︃

dt if u ∈ Kλ(u0, u1),
∞ else,

(5.38)

and

Φελ(u) =
ˆ T

0
e−t/εϕλ(u) dt (5.39)

with domains

D(Īρε) = Kλ(u0, u1), D(Φελ) = V .

The functional Iλρε is proper, lower semicontinuous, and convex in V. Moreover, thanks to
the Poincaré inequality, it is coercive on V. The Direct Method ensures that Iλρε admits a
minimizer uελ ∈ Kλ(u0, u1).

5.4.2 Representation of subdifferentials
In order to derive the Euler-Lagrange equation for Iλρε, we prepare here some representation
results. Recalling that

V = Lp(0, T ;V ), W = H2(0, T ;L2(Ω)) ∩W 1,p(0, T ;V ) ,

we denote by ∂V and ∂W the subdifferentials in the sense of convex analysis from V to V∗ and
from W to W∗, respectively.
First, note that we can further decompose the functional Īρε : V → [0,+∞] as

Īρε = Yρε + Ȳ ,

where

Yρε(u) =

⎧⎪⎨⎪⎩
ˆ T

0
e−t/ε

(︃
ε2ρ

2 |u′′(t)|2L2(Ω) + εψ(u′(t))
)︃

dt if u ∈ W ,
∞ else,

Ȳ (u) =
{︄

0 if u ∈ W , u(0) = u0 , and ρu′(0) = ρu1,
∞ else.
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The functional Yρε is Gateaux differentiable in W , in particular we have

⟨dWYρε(u), e⟩W =
ˆ T

0
e−t/εε2ρ⟨u′′(t), e′′(t)⟩L2(Ω) + e−t/εε⟨dV ψ(u′(t)), e′(t)⟩V dt , ∀e ∈ W .

On the other hand, we have

⟨f, e⟩W = 0 for all [u, f ] ∈ ∂W Ȳ and e ∈ W with e(0) = e′(0) = 0.

Since D(Yρε) = W , we deduce that

∂W Īρε = dWYρε + ∂W Ȳ ,

with domain
D(∂W Īρε) = {u ∈ W : u(0) = u0, ρu

′(0) = ρu1} .

Let u ∈ D(∂W Īρε). As we have D(Īρε) ⊂ W ⊂ V , we conclude that ∂V Īρε ⊂ ∂W Īρε. Letting
f ∈ ∂V Īρε(u), since f = (dWYρε(u) + ∂W Ȳ (u)) ∈ V∗, we obtain
ˆ T

0
e−t/εε2ρ ⟨u′′(t), e′′(t)⟩L2(Ω) + e−t/εε ⟨dV ψ (u′(t)) , e′(t)⟩V dt =

ˆ T

0
⟨f(t), e(t)⟩V dt ,

(5.40)
∀e ∈ W such that e(0) = e′(0) = 0 .

By setting

g(t) := −
ˆ T

t

f(s) ds,

we have g ∈ W 1,p′(0, T ;V ∗) and, for all φ ∈ C∞
c (0, T ),

ˆ T

0
φ(t)g(t) dt = −

ˆ T

0

(︃ ˆ s

0
φ(t) dt

)︃
f(s) ds

= −
ˆ T

0

(︃
e−t/εε2ρu′′(t)φ′(t) + e−t/εεdV ψ (u′(t))φ(t)

)︃
dt,

where in the last equality we used (5.40). As a next step, we observe that dV ψ(u′(t)) ∈
W 1,q(0, T ;Lq(Ω)) with q = 2p

3p−4 due to the assumptions on ψ, in particular (5.13)-(5.14).
Note that q ≥ 1 being p ≤ 4. Hence,

(︂
g + e−t/εεdV ψ(u′)

)︂
∈ W 1,q(0, T ;Lq(Ω)) due to

q ≤ p′, being p ≥ 2. As a consequence, we obtain
ˆ T

0

(︃
g(t) + e−t/εεdV ψ (u′(t))

)︃
φ(t) dt = −

ˆ T

0
e−t/εε2ρu′′(t)φ′(t) dt,

whence e−t/εε2ρu′′ ∈ W 1,q(0, T ;Lq(Ω)) with d
dt

(︂
e−t/εε2ρu′′

)︂
= g + e−t/εεdV ψ (u′). In

particular,
(︂
e−t/εε2ρu′′′ − e−t/εερu′′

)︂
∈ Lq(0, T ;Lq(Ω)) and e−t/εε2ρu′′′ ∈ Lq(0, T ;Lq(Ω))

as u′′ ∈ L2(0, T ;L2(Ω)). It follows from (5.40) that

−
ˆ T

0
e−t/εε2ρu′′′(t)φ′(t) dt

=
ˆ T

0
f(t)φ(t) dt−

ˆ T

0
e−t/εεdV ψ (u′(t))φ′(t) dt−

ˆ T

0
e−t/εερu′′(t)φ′(t) dt,
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for all φ ∈ C∞
0 (0, T ),

which yields e−t/εε2ρu′′′ − e−t/εεdV ψ(u′) − e−t/εερu′′ ∈ W 1,p′(0, T ;V ∗), and hence, due to
the facts obtained so far, we infer that u ∈ W 4,q(0, T ;Lq(Ω)).

Therefore, integrating by parts in (5.40), we have

f(t) = d2

dt2
(︂
e−t/εε2ρu′′(t)

)︂
− d

dt
(︂
e−t/εεdV ψ (u′(t))

)︂
∈ V ∗

for almost all t ∈ (0, T ), f ∈ V∗ and also ε2ρu′′(T ) = ε2ρu′′′(T ) − εdV ψ(u′(T )) = 0, due to
the arbitrariness of e(T ), e′(T ) ∈ V , as well as ρu′′(T ) = ερu′′′(T ) − dV ψ(u′(T )) = 0.

Finally, we can conclude that

D(∂V Īρε) ⊂ {u ∈ W : u ∈ W 4,q(0, T ;Lq(Ω)), u(0) = u0, ρu
′(0) = ρu1,

ρu′′(T ) = 0, ερu′′′(T ) − dV ψ(u′(T )) = 0} , (5.41)

and

∂V Īρε(u)(t) = d2

dt2
(︂
e−t/εε2ρu′′(t)

)︂
− d

dt
(︂
e−t/εεdV ψ (u′(t))

)︂
for a.e. t ∈ (0, T ) . (5.42)

We observe that the inclusion ⊂ in (5.41) can be replaced by an equality, as the reverse
inclusion ⊃ is straight forward.

Note that ∂VΦελ : V → R is demicontinuous (i.e., strong-weak continuous) and single-valued.
As a consequence, we have that D(Φελ) = V. As ∂V Īρε + ∂VΦελ is maximal monotone in
V × V∗, we obtain

∂VI
λ
ερ = ∂V Īρε + ∂VΦελ. (5.43)

Note that the minimizer of Iλερ is unique. It hence coincides with the strong solution of (5.44).

5.4.3 Euler-Lagrange equation for Iλ
ρε

Thanks to the decomposition (5.43), the minimizer uελ of Iλρε fulfills

0 ∈ ∂V Īρε(uελ) + ∂VΦελ(uελ).

In particular, the following holds

ρε2u′′′′
ελ − 2ρεu′′′

ελ + ρu′′
ελ + ηελ − εξ′

ελ + ξελ = 0 in V ∗, a.e. in (0, T ), (5.44)
ηελ = ∂V ϕλ(uελ) = −∆Jλuελ + f(Jλuελ) in V ∗, a.e. in (0, T ), (5.45)
ξελ = dV ψ(u′

ελ) in V ∗, a.e. in (0, T ), (5.46)
uελ(0) = u0, (5.47)
ρu′

ελ(0) = ρu1, (5.48)
ρu′′

ελ(T ) = 0, (5.49)
ερu′′′

ελ(T ) − ξελ(T ) = 0. (5.50)
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5.4.4 A priori estimates
We now derive a priori estimates for uελ which will eventually allow us to pass to the limit for
λ → 0 in Subsection 5.4.5, then as ε → 0 in Section 5.5, and finally ρ → 0 in Section 5.6. In
what follows, the symbol C will denote a generic positive constant independent on λ, ε, and
ρ, possibly varying from line to line. Furthermore, for the sake of brevity, we write (u, ξ, η)
instead of (uελ, ξελ, ηελ) in the following. Occasionally, specific dependencies of the constant
C will be indicated.
Testing (5.44) with u′ − u1, integrating over Ω × (0, t) for an arbitrary t ∈ (0, T ] and then
integrating by parts, we obtain

ρε2

2 |u′′(0)|2L2(Ω) − ρε2

2 |u′′(t)|2L2(Ω) + ρε2⟨u′′′(t), u′(t) − u1⟩

− 2ρε⟨u′′(t), u′(t) − u1⟩ + 2ρε
ˆ t

0
|u′′(s)|2L2(Ω) ds

+ ρ

2 |u′(t) − u1|2L2(Ω) − ε⟨ξ(t), u′(t) − u1⟩ +
ˆ t

0
⟨ξ(s), u′(s) − u1⟩ ds+ εψ(u′(t)) + ϕλ(u(t))

= εψ(u1) + ϕλ(u0) +
ˆ t

0
⟨η(s), u1⟩ ds . (5.51)

Observe that for t = T , the estimate (5.51) reduces to
ˆ T

0
⟨ξ(t), u′(t) − u1⟩ dt+ ρε2

2 |u′′(0)|2L2(Ω) + 2ρε
ˆ T

0
|u′′(t)|2L2(Ω) dt+ ρ

2 |u′(T ) − u1|2L2(Ω)

+ εψ(u′(T )) + ϕλ(u(T )) = εψ(u1) + ϕλ(u0) +
ˆ T

0
⟨η(t), u1⟩ dt . (5.52)

Integrating (5.51) over (0, T ), then integrating by parts and summing it to (5.52), we obtain

ρε2(T + 1)
2 |u′′(0)|2L2(Ω) + ρ(4 − 3ε)ε

2

ˆ T

0
|u′′(t)|2L2(Ω) dt+ 2ρε

ˆ T

0

ˆ t

0
|u′′(s)|2L2(Ω) ds dt

+ ρ(1 − 2ε)
2 |u′(T ) − u1|2L2(Ω) +

ˆ T

0

ρ

2 |u′(t) − u1|2L2(Ω) dt+ (1 − ε)
ˆ T

0
⟨ξ(t), u′(t) − u1⟩ dt

+
ˆ T

0

ˆ t

0
⟨ξ(s), u′(s) − u1⟩ ds dt+ εψ(u′(T )) + ϕλ(u(T ))

+ ε

ˆ T

0
ψ(u′(t)) dt+

ˆ T

0
ϕλ(u(t)) dt

= ε(T + 1)ψ(u1) + (T + 1)ϕλ(u0) +
ˆ T

0
⟨η(t), u1⟩ dt+

ˆ T

0

ˆ t

0
⟨η(s), u1⟩ ds dt . (5.53)

Remark 72. Note that above computations are only formal. Indeed, the terms u′′′′, u′′′ and ξ′

are only in Lq(0, T ;Lq(Ω)), whereas u′ ∈ V∗. This argument can be made rigorous by means
of a time-discretization technique. For more details about a rigorous derivation of (5.53), see
Section 5.7.

Using the fact that ψ, ϕ ≥ 0 and ⟨ξ(t), u′(t) − u1⟩ ≥ ψ(u′(t)) − ψ(u1), we get from (5.53)

ρ(4 − 3ε)ε
2

ˆ T

0
|u′′(t)|2L2(Ω) dt+ ρ(1 − 2ε)

2 |u′(T ) − u1|2L2(Ω)
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+ (1 − ε)
ˆ T

0
ψ(u′(t)) dt+

ˆ T

0
ϕλ(u(t)) dt

≤
(︃
ε+ T + T 2

2

)︃
ψ(u1) + (T + 1)ϕλ(u0) +

ˆ T

0
⟨η(t), u1⟩ dt+

ˆ T

0

ˆ t

0
⟨η(s), u1⟩ ds dt .

The last two terms in the previous inequality can be treated as follows
ˆ T

0
⟨η(t), u1⟩ dt+

ˆ T

0

ˆ t

0
⟨η(s), u1⟩ ds dt =

ˆ T

0
(1 + T − t)⟨η(t), u1⟩ dt

≤ (1 + T )
ˆ T

0
|η(t)|X∗ |u1|X dt

≤ C(T )
ˆ T

0
(|Jλu|X + |Jλu|r−1

Lr(Ω) + 1)|u1|X dt

≤ δC(T )
ˆ T

0
(|Jλu|2X + |Jλu|rLr(Ω)) dt+ C(T, δ)(|u1|2X + |u1|rX + |u1|X)

≤ δC(T )
ˆ T

0
ϕ(Jλu) dt+ C(T, δ, u1)

≤ δC(T )
ˆ T

0
ϕλ(u) dt+ C(T, δ, u1)

where we used (5.19), the Young inequality for a sufficiently small δ > 0 to be fixed below, as
well as (5.17) and definition (5.35). As a consequence, we obtain the following estimate

ρ(4 − 3ε)ε
2

ˆ T

0
|u′′(t)|2L2(Ω) dt+ ρ(1 − 2ε)

2 |u′(T ) − u1|2L2(Ω)

+ (1 − ε)
ˆ T

0
ψ(u′(t)) dt+ c

ˆ T

0
ϕλ(u(t)) dt

≤
(︃
ε+ T + T 2

2

)︃
ψ(u1) + (T + 1)ϕλ(u0) + C(T, δ, u1) (5.54)

for some strictly positive constant c = c(T, δ) < 1. For a sufficently small ε > 0, from (5.54)
we can deduce

ερ∥u′′∥2
L2(0,T ;L2(Ω)) ≤ C, (5.55)

ρ|u′(T ) − u1|2L2(Ω) ≤ C, (5.56)
∥u′∥pLp(0,T ;V ) ≤ C, (5.57)
∥ dV ψ(u′)∥p

′

Lp′ (0,T ;V ∗) ≤ C (5.58)

due to (5.11) and (5.12), and
ˆ T

0
ϕλ(u(t)) dt ≤ C . (5.59)

Hence, using (5.17)-(5.18) and (5.35), we get

∥Jλu∥L2(0,T ;X) ≤ C , (5.60)
∥Jλu∥Lr(0,T ;Lr(Ω)) ≤ C . (5.61)
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Furthermore, it follows that

sup
t∈(0,T )

|u(t)|V ≤ C, (5.62)
√
ρε∥u′∥C([0,T ];L2(Ω)) ≤ C , (5.63)

whence we obtain
√
ρε∥dV ψ(u′(t))∥W 1,q(0,T ;Lq(Ω)) ≤ C with q = 2p

3p− 4 , (5.64)

due to (5.13)-(5.14). Since η ∈ ∂V ϕ(Jλu) ⊂ ∂XϕX(Jλu), assumption (5.20) together with,
(5.60), |Jλu|V ≤ C(|u|V + 1) (see [22, Lemma 1.3]) and (5.62) give

∥η∥2
L2(0,T ;X∗) ≤ C. (5.65)

We close this subsection by deriving additional a priori estimates. A comparison in equation
(5.44) yields

∥ρε2u′′′′ − 2ρεu′′′ − εξ′∥L2(0,T ;X∗)+Lp′ (0,T ;V ∗) ≤ C(T, ρ),
∥ρε2u′′′′ − 2ρεu′′′ + ρu′′∥L2(0,T ;X∗)+Lq(0,T ;Lq(Ω))+Lp′ (0,T ;V ∗) ≤ C(T, ρ).

Moreover, we deduce additional regularity for the first two terms in (5.44). Observe that,
setting v := u′′′, we can write the following ODE

ρε2v′(t) − 2ρεv(t) + w(t) = 0 in V ∗ ,

where w(t) := ρu′′(t) + η(t) − εξ′(t) + ξ(t) for a.a. t ∈ (0, T ). Note that we have a uniform
bound (only in λ, not in ε) in the Lq(0, T ;Lq(Ω) +X∗) norm for w thanks to (5.55), (5.64),
and (5.65). Hence, solving the ODE we can deduce

∥v∥Lq(0,T ;Lq(Ω)+X∗) ≤ ε−5/2C(ρ, T ) ,

then, by comparison,

∥v′∥Lq(0,T ;Lq(Ω)+X∗) ≤ ε−7/2C(ρ, T ) ,

which eventually ensures that

∥u′′′∥Lq(0,T ;Lq(Ω)+X∗) + ∥u′′′′∥Lq(0,T ;Lq(Ω)+X∗) ≤ C(ε, ρ, T ) .

5.4.5 Passage to the limit as λ → 0
Let uελ be a minimizer of Iλρε, ηελ = ∂V ϕλ(uελ), and ξελ = dV ψ(u′

ελ). We have proved
that (uελ, ηελ, ξελ) solves (5.44)–(5.50). From the uniform estimates of Subsection 5.4.4, we
deduce the following convergences as λ → 0 (up to not relabeled subsequences)

uελ → uε weakly in W 4,q(0, T ;Lq(Ω) +X∗) ∩H2(0, T ;L2(Ω)) ∩W 1,p(0, T ;V ), (5.66)
Jλuελ → vε weakly in L2(0, T ;X), (5.67)
ξελ → ξε weakly in W 1,q(0, T ;Lq(Ω) +X∗) ∩ Lp

′(0, T ;V ∗), (5.68)
ηελ → ηε weakly in L2 (0, T ;X∗) . (5.69)
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Convergences (5.66)-(5.69) are sufficient in order to pass to the limit in equation (5.44) and
obtain

ρε2u′′′′
ε − 2ρεu′′′

ε + ρu′′
ε − εξ′

ε + ξε + ηε = 0 in Lq(Ω) +X∗ for a.e. t ∈ (0, T ). (5.70)

Proceeding as in [8, Subsec. 3.3], we can deduce that

Jλuελ → vε strongly in C([0, T ];V ), (5.71)

vε = uε, and that the strong convergences

uελ → uε strongly in Lp(0, T ;V ) , (5.72)
uελ(t) → uε(t) strongly in V for a.a. t ∈ (0, T ) , (5.73)

hold. Moreover, due to (5.62) we have that uελ → uε strongly in any Ls(0, T ;V ) for
s ∈ [0,∞).
Since V ∗ ⊂ X∗ compactly and L2(Ω) ⊂ X∗ compactly, we have

ξελ → ξε strongly in C([0, T ];X∗), (5.74)
u′′
ελ → u′′

ε strongly in C([0, T ];X∗), (5.75)

hence u′′
ε(T ) = 0. Furthermore, let q(t) := lim infλ→0 |u′

ελ(t)|L2(Ω), and note that q ∈ C[0, T ]
due to (5.63). Since q(t) < ∞ for all t ∈ [0, T ], we can take a subsequence λtn → 0 (possibly
depending on t) such that

u′
ελ(t) → u′

ε(t) weakly in L2(Ω). (5.76)

Finally, the initial data (5.47)-(5.48) and the final datum (5.49) can be recovered in the limit
λ → 0 thanks to convergence (5.66). The final datum (5.50) can be recovered in the limit
arguing as it follows. From (5.50) and (5.74) one can deduce that

ερu′′′
ελ(T ) = ξελ(T ) → ξε(T ) strongly in X∗.

On the other hand, it follows from (5.66) that

ερu′′′
ελ(T ) → ερu′′′

ε (T ) weakly in Lq(Ω) +X∗,

hence ερu′′′
ε (T ) = ξε(T ) in Lq(Ω) +X∗.

Identification of the nonlinearities

Identification of ηε. Define the operator A : X → X∗ and recall B : X → X∗ as

⟨Au, v⟩X :=
ˆ

Ω
∇u·∇v dx, ⟨B(u), v⟩V :=

ˆ
Ω
f(u)v dx (5.77)

so that ⟨Au, u⟩ = ∥u∥2
X and B(u) = f(u) almost everywhere. At first, convergence (5.67)

entails that AJλuελ → Auε weakly in L2(0, T ;X∗). On the other hand, the strong convergence
(5.73) and the continuity of f ensure that f(uελ) → f(uε) almost everywhere. As f is bounded
by (5.17), we readily get that f(uελ) → f(uε) strongly in Ls(0, T ;Ls(Ω)) for any s < r′. As
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r ≤ p < 2∗, this in particular implies that ηε = −∆uε + f(uε) in X∗ almost everywhere in
(0, T ).
Identification of ξε. Recall that uλε ∈ W 4,q(0, T ;X∗) ∩ H2(0, T ;L2(Ω)) ∩ W 1,p(0, T ;V ) is
such that ρu′′

λε(T ) = 0 and uλε(0) = u0, ρu′
λε(0) = ρu1, and ξελ ∈ W 1,q(0, T ;Lq(Ω)) ∩

Lp
′(0, T ;V ∗). Moreover, note that we have ρε2u′′′′

λε − 2ρεu′′′
λε − εξ′

λε ∈ Lp
′(0, T ;V ∗). Consider

a sequence of mollifiers gρ̃, namely gρ̃(x) = ρ̃−dg(x/ρ̃) with g ∈ C∞
c (Ω) and

´
R g(t) dt = 1,

and define uρ̃ελ := gρ̃ ∗ uελ. Then, we have (uρ̃ελ)′ = gρ̃ ∗ u′
ελ and

ˆ T

0
⟨εξελ(t), u′

ελ(t)⟩V dt = lim
ρ̃→0

ˆ T

0
⟨εξελ(t), (uρ̃ελ)′(t)⟩V dt

= lim
ρ̃→0

⟨εξελ(T ), uρ̃ελ(T ) − u0⟩ − ⟨εξελ(0), uρ̃ελ(0) − u0⟩ −
ˆ T

0
⟨εξ′

ελ(t), u
ρ̃
ελ(t) − u0⟩ dt

where we integrated by parts. Note that the dualities in the last line are with respect the dual
space of X∗ + Lq(Ω), namely X ∩ Lq

′(Ω) with q′ = 2p
4−p conjugate exponent of q = 2p

3p−4 .

As a next step, we exploit (5.44), obtaining
ˆ T

0
⟨εξελ(t), u′

ελ(t)⟩V dt = lim
ρ̃→0

(︃
⟨εξελ(T ), uρ̃ελ(T ) − u0⟩ − ⟨εξελ(0), uρ̃ελ(0) − u0⟩

−
ˆ T

0
⟨ρε2u′′′′

ελ(t) − 2ρεu′′′
ελ(t), u

ρ̃
ελ(t) − u0⟩ dt

)︃

−
ˆ T

0
⟨ρu′′

ελ(t) + ξελ + ηελ, uελ(t) − u0⟩V dt.

We integrate by parts the term

⟨εξελ(T ), uρ̃ελ(T ) − u0⟩ − ⟨εξελ(0), uρ̃ελ(0) − u0⟩

−
ˆ T

0
⟨ρε2u′′′′

ελ(t) − 2ρεu′′′
ελ(t), u

ρ̃
ελ(t) − u0⟩ dt

= ⟨εξελ(T ) − ρε2u′′′
ελ(T ), uρ̃ελ(T ) − u0⟩ − ⟨εξελ(0) − ρε2u′′′

ελ(0), uρ̃ελ(0) − u0⟩
+ ⟨2ρεu′′

ελ(T ), uρ̃ελ(T ) − u0⟩ − ⟨2ρεu′′
ελ(0), uρ̃ελ(0) − u0⟩

+
ˆ T

0
⟨ρε2u′′′

ελ(t), (u
ρ̃
ελ)′(t)⟩ dt−

ˆ T

0
⟨2ρεu′′

ελ(t), (u
ρ̃
ελ)′(t)⟩ dt

= −⟨εξελ(0) − ρε2u′′′
ελ(0), uρ̃ελ(0) − u0⟩ − ⟨2ρεu′′

ελ(0), uρ̃ελ(0) − u0⟩

+
ˆ T

0
⟨ρε2u′′′

ελ(t), (u
ρ̃
ελ)′(t)⟩ dt−

ˆ T

0
⟨2ρεu′′

ελ(t), (u
ρ̃
ελ)′(t)⟩ dt

= −⟨εξελ(0) − ρε2u′′′
ελ(0), uρ̃ελ(0) − u0⟩ − ⟨2ρεu′′

ελ(0), uρ̃ελ(0) − u0⟩ − ⟨ρε2u′′
ελ(0), (uρ̃ελ)′(0)⟩

−
ˆ T

0
⟨ρε2u′′

ελ(t), (u
ρ̃
ελ)′′(t)⟩ dt−

ˆ T

0
⟨2ρεu′′

ελ(t), (u
ρ̃
ελ)′(t)⟩ dt,

due to (5.49) and (5.50). Hence, we obtain

lim
ρ̃→0

(︃
⟨εξελ(T ), uρ̃ελ(T ) − u0⟩ − ⟨εξελ(0), uρ̃ελ(0) − u0⟩

−
ˆ T

0
⟨ρε2u′′′′

ελ(t) − 2ρεu′′′
ελ(t), u

ρ̃
ελ(t) − u0⟩ dt

)︃

194



5.4. Existence of solutions to the Euler-Lagrange problem

= −⟨ρε2u′′
ελ(0), u1⟩X∩Lq′ (Ω) −

ˆ T

0
ρε2|u′′

ελ(t)|2L2(Ω) dt−
ˆ T

0
⟨2ρεu′′

ελ(t), u′
ελ(t)⟩V dt

= −⟨ρε2u′′
ελ(0), u1⟩X∩Lq′ (Ω) −

ˆ T

0
ρε2|u′′

ελ(t)|2L2(Ω) dt

− ρε|u′
ελ(T )|2L2(Ω) + ρε|u1|2L2(Ω)

It follows that
ˆ T

0
⟨εξελ(t), u′

ελ(t)⟩V dt

= −⟨ρε2u′′
ελ(0), u1⟩X∩Lq′ (Ω) −

ˆ T

0
ρε2|u′′

ελ(t)|2L2(Ω) dt

− ρε|u′
ελ(T )|2L2(Ω) + ρε|u1|2L2(Ω) −

ˆ T

0
⟨ρu′′

ελ, uελ(t) − u0⟩V dt

−
ˆ T

0
⟨ξελ, uελ(t) − u0⟩V dt−

ˆ T

0
⟨ηελ, uελ(t) − u0⟩V dt . (5.78)

Observe now that
ˆ T

0
⟨ηελ(t), Jλuελ(t) − u0⟩X dt =

ˆ T

0
⟨ηελ(t), uελ(t) − u0⟩V dt− λp

′−1
ˆ T

0
|ηελ(t)|p

′

V ∗ dt

≤
ˆ T

0
⟨ηελ(t), uελ(t) − u0⟩V dt ,

and we have

lim sup
λ→0

(︄
−
ˆ T

0
⟨ηελ(t), Jλuελ(t) − u0⟩X dt

)︄
≤ −

ˆ T

0
⟨ηε(t), uε(t) − u0⟩X dt .

Using convergences (5.75), (5.66) and (5.76), we have

lim
λ→0

(︂
−⟨ρε2u′′

ελ(0), u1⟩X∩Lq′ (Ω)

)︂
= −⟨ρε2u′′

ε(0), u1⟩X ,

lim sup
λ→0

(︄
−
ˆ T

0
ρε2|u′′

ελ(t)|2L2(Ω) dt
)︄

≤ −
ˆ T

0
ρε2|u′′

ε(t)|2L2(Ω) dt,

lim sup
λ→0

(︂
− ρε|u′

ελ(T )|2L2(Ω)

)︂
≤ −ρε|u′

ε(T )|2L2(Ω) .

Hence, from convergences (5.66), (5.72) and (5.68), we can deduce that

lim sup
λ→0

ˆ T

0
⟨εξελ(t), u′

ελ(t)⟩V dt

≤ −⟨ρε2u′′
ε(0), u1⟩X∩Lq′ (Ω) −

ˆ T

0
ρε2|u′′

ε(t)|2L2(Ω) dt− ρε|u′
ε(T )|2V + ρε|u1|2V

−
ˆ T

0
⟨ρu′′

ε , uε(t) − u0⟩V dt−
ˆ T

0
⟨ξε, uε(t) − u0⟩V dt−

ˆ T

0
⟨ηε, uε(t) − u0⟩X dt .
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Note that the same mollification argument that we used to deduce (5.78) for uελ works also
for uε. As a consequence, we obtain

lim sup
λ→0

ˆ T

0
⟨εξελ(t), u′

ελ(t)⟩V dt =
ˆ T

0
⟨εξε(t), u′

ε(t)⟩V dt .

From the demiclosedness of the maximal monotone operator u ↦→ dV ψ(u(·)) in Lp(0, T ;V ) ×
Lp

′(0, T ;V ∗), we can conclude by Lemma 70 that ξε(t) coincides with dV ψ(u′
ε(t)) for a.a.

t ∈ (0, T ), as well as

lim
λ→0

ˆ T

0
⟨ξελ(t), u′

ελ(t) − u1⟩ dt =
ˆ T

0
⟨ξε(t), u′

ε(t) − u1⟩ dt . (5.79)

5.4.6 Minimization of the WIDE functional Iρε

Our next aim is to show that the above-determined limit uε is the unique minimizer of Iρε on
K(u0, u1). More precisely, we prove that the strong solution (uε, ξε, ηε) of the Euler-Lagrange
problem (5.21)-(5.27) is a minimizer of Iρε in V .
Note that K(u0, u1) ⊂ Kλ(u0, u1) and ϕλ ≤ ϕ. By passing to the limit as λ → 0 and using
the dominated convergence theorem, we have

Iλρε(v) → Iρε(v) ∀v ∈ K(u0, u1).

As uελ is a global minimizer of Iλρε, we have

Iλρε(v) ≥ Iλρε(uελ) ∀v ∈ K(u0, u1).

Convergences (5.66)-(5.67) and the lower semicontinuity of the convex integrals u ↦→´ T
0 e−t/ε ε2ρ

2 |u′′(t)|2L2(Ω)dt, u ↦→
´ T

0 e−t/εεψ(u′(t))dt, and u ↦→
´ T

0 e−t/εϕ (u(t)) dt in Lp(0, T ;V )
give

lim inf
λ→0

Iλρε(uελ) = lim inf
λ→0

ˆ T

0
e−t/ε

(︃
ε2ρ

2 |u′′
ελ(t)|2L2(Ω) + εψ(u′

ελ(t)) + ϕλ (uελ(t))
)︃

dt

≥ lim inf
λ→0

ˆ T

0
e−t/ε

(︃
ε2ρ

2 |u′′
ελ(t)|2L2(Ω) + εψ(u′

ελ(t)) + ϕ (Jλuελ(t))
)︃

dt

≥
ˆ T

0
e−t/ε

(︃
ε2ρ

2 |u′′
ε(t)|2L2(Ω) + εψ(u′

ε(t)) + ϕ
(︂
uε(t)

)︂)︃
dt.

As a consequence, we have

Iρε(v) ≥ Iρε(uε) ∀v ∈ K(u0, u1).

Namely, uε minimizes Iρε on K(u0, u1), hence uε ∈ D(∂Iρε) and 0 ∈ ∂VIρε(uε).

5.5 The causal limit
In this section, we proceed to the proof of Theorem 68 by checking that, up to subsequences,
uε converges to a strong solution of the target problem (5.3)-(5.7).
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Starting from the uniform estimates derived in Subsection 5.4.4 and using the lower semiconti-
nuity of norms and of ϕ, we deduce the following bounds, valid for all T > 0,

∥u′
ε∥Lp(0,T ;V ) + ∥ξε∥Lp′ (0,T ;V ∗)

+ ∥ρε2u′′′′
ε − 2ρεu′′′

ε + ρu′′
ε − εξ′

ε∥L2(0,T ;X∗)+Lp′ (0,T ;V ∗) ≤ C(T ), (5.80)

∥uε∥L2(0,T ;X) +
ˆ T

0
ϕ(uε(t)) dt+ ∥ηε∥L2(0,T ;X∗) ≤ C(T ). (5.81)

Up to not relabeled subsequences, these bounds entail the following convergences as ε → 0+ :

uε → u weakly in W 1,p(0, T ;V ) and strongly in C([0, T ];V ),
(5.82)

uε → u weakly in L2(0, T ;X), (5.83)
ξε → ξ weakly in Lp′(0, T ;V ∗), (5.84)

ρε2u′′′′
ε − 2ρεu′′′

ε + ρu′′
ε − εξ′

ε → ζ weakly in L2(0, T ;X∗) + Lp
′(0, T ;V ∗), (5.85)

ηε → η weakly in L2 (0, T ;X∗) . (5.86)

Convergences (5.84)-(5.86) are sufficient in order to pass to the limit in equation (5.70) and
obtain

ζ + ξ + η = 0 in X∗ a.e. in (0, T ). (5.87)

Initial conditions

Note that the strong convergence in (5.82) follows from the compact embedding W 1,p(0, T ;V )∩
L2(0, T ;X) ↪→ C([0, T ];B) for some Banach space B such that X ⊂ B compactly and from
an application of the Aubin-Lions Lemma. The initial condition u(0) = u0 is thus a direct
consequence of (5.82).
Furthermore, by defining wε := ρε2u′′′

ε − 2ρεu′′
ε + ρu′

ε − εξε, we observe that the uniform
bound ∥wε∥C([0,T ];X∗) ≤ C follows from (5.80). In particular, we can take a subsequence
εn → 0 such that

wε(0) → w0 weakly in X∗.

Finally, by testing wε(0) with v ∈ X, integrating by parts and letting ε → 0, we can deduce
that w0 = ρu1.

Identification of the nonlinearities

As a final step, we need to identify the limits ζ, ξ, and η fulfilling (5.87).
Identification of the limit ζ ≡ ρu′′. Let φ ∈ C∞

c ([0, T ] × Ω). By integrations by parts we
obtain

ˆ T

0
⟨ρε2u′′′′

ε − 2ρεu′′′
ε + ρu′′

ε − εξ′
ε, φ⟩ dt

=
ˆ T

0
⟨ρε2u′′

ε , φ
′′⟩ dt+

ˆ T

0
⟨2ρεu′′

ε , φ
′⟩ dt−

ˆ T

0
⟨ρu′

ε, φ
′⟩ dt−

ˆ T

0
⟨εξε, φ′⟩ dt

→ −
ˆ T

0
⟨ρu′, φ′⟩X dt =

ˆ T

0
⟨ρu′′, φ⟩X dt as ε → 0,
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where we used (5.55), (5.58), and (5.82) to pass to the limit. Hence, ζ ≡ ρu′′ almost
everywhere.
Identification of the limit η ≡ −∆u+ f(u). Arguing as in Subsection 5.4.5, we exploit the
weak convergence (5.83) and the a.e. pointwise convergence (5.82) in order to obtain that
ηε = −∆uε + f(uε) → −∆u+ f(u) almost everywhere in X∗. Hence, η ≡ −∆u+ f(u) in
X∗.
Identification of the limit ξ ≡ dV ψ(u′). Integrating (5.51) over (0, T ) and integrating by parts,
we obtainˆ T

0

ˆ t

0
⟨ξελ(s), u′

ελ(s) − u1⟩ ds dt

≤ ρε2

2

ˆ T

0
|u′′
ελ(t)|2L2(Ω) dt+ ρε|u′

ελ(T ) − u1|2L2(Ω) − ρ

2

ˆ T

0
|u′
ελ(t) − u1|2L2(Ω) dt+ εTψ(u1)

+
ˆ T

0
ε⟨ξελ(t), u′

ελ(t) − u1⟩ dt−
ˆ T

0
ϕλ(uελ(t)) dt+ Tϕλ(u0) +

ˆ T

0

ˆ t

0
⟨ηελ(s), u1⟩ ds dt

≤ εC − ρ

2

ˆ T

0
|u′
ελ(t) − u1|2L2(Ω) dt−

ˆ T

0
ϕλ(uελ(t)) dt+ Tϕλ(u0) +

ˆ T

0

ˆ t

0
⟨ηελ(s), u1⟩ ds dt

due to (5.55), (5.56), (5.57), and (5.58). Then, we take the lim sup as λ → 0. On the
left-hand side we pass to the limit thanks to (5.79), while on the right-hand side we use (5.66)
and (5.69) together with

lim inf
λ→0

ϕλ(uελ) ≥ lim inf
λ→0

ϕ(Jλuελ) ≥ ϕ(uε) ,

which is given by the weak lower continuity of ϕ in X, (5.67) and vε = uε. In particular, we
get
ˆ T

0

ˆ t

0
⟨ξε(s), u′

ε(s) − u1⟩ ds dt

≤ −ρ

2

ˆ T

0
|u′
ε(t) − u1|2L2(Ω) dt−

ˆ T

0
ϕ(uε(t)) dt+ Tϕ(u0) +

ˆ T

0

ˆ t

0
⟨ηε(s), u1⟩ ds dt .

By arguing as above, convergences (5.82), (5.83), and (5.86) give

lim sup
ε→0

ˆ T

0

ˆ t

0
⟨ξε(s), u′

ε(s) − u1⟩ ds dt (5.88)

≤ −ρ

2

ˆ T

0
|u′(t) − u1|2L2(Ω) dt−

ˆ T

0
ϕ(u(t)) dt+ Tϕ(u0) +

ˆ T

0

ˆ t

0
⟨η(s), u1⟩ ds dt

≤ −
ˆ T

0

ˆ t

0
⟨ρu′′(s) + η(s), u′(s) − u1⟩ ds dt =

ˆ T

0

ˆ t

0
⟨ξ(s), u′(s) − u1⟩ ds dt

where we integrated by parts and we used (5.87). In particular, recalling Remark 71, we have

lim sup
ε→0

ˆ T

0
(T − t)⟨ξε(s), u′

ε(s) − u1⟩ dt ≤
ˆ T

0
(T − t)⟨ξ(s), u′(s) − u1⟩ dt

From the demiclosedness of the maximal monotone operator u ↦→ dV ψ(u(·)) in V × V∗ we
can conclude by Lemma 70 that ξ(t) coincides with dV ψ(u′(t)) for a.a. t ∈ (0, T ), and

lim
ε→0

ˆ T

0

ˆ t

0
⟨ξε(s), u′

ε(s) − u1⟩ ds dt =
ˆ T

0

ˆ t

0
⟨ξ(s), u′(t) − u1⟩ ds dt . (5.89)
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5.6 The viscous limit
In this section we discuss the viscous limit ρ → 0. In particular, we prove Theorem 69.i and
Theorem 69.ii in Subsection 5.6.1 and Subsection 5.6.2, respectively. Furthermore, we observe
that the statement of Theorem 69.iii can be established by arguing as done in Section 5.5,
but obtaining ζ ≡ 0 as also ρ → 0.

5.6.1 Gamma-convergence of Iρε in the viscous limit
We consider the WIDE functionals Iρε as defined in (5.10), namely Iρε : V → (−∞,∞] such
that

Iρε(u) =

⎧⎪⎨⎪⎩
ˆ T

0
e−t/ε

(︃
ε2ρ

2

ˆ
Ω

|u′′(t)|2 dx+ εψ(u′(t)) + ϕ(u(t))
)︃

dt if u ∈ K(u0, u1),
∞ else,

where

K(u0, u1) = {u ∈ H2(0, T ;L2(Ω)) ∩W 1,p(0, T ;V ) ∩ L2(0, T ;X) : u(0) = u0, ρu
′(0) = ρu1},

hence D(Iρε) = K(u0, u1). The aim of this subsection is to prove that, by letting ρ → 0, the
sequence of functionals Iρε to Γ- converges with respect to the strong topology in V to

Īε(u) =

⎧⎪⎨⎪⎩
ˆ T

0
e−t/ε

(︃
εψ(u′(t)) + ϕ(u(t))

)︃
dt if u ∈ K̄(u0),

∞ else,

where

K̄(u0) = {W 1,p(0, T ;V ) ∩ L2(0, T ;X) : u(0) = u0},

hence D(Īε) = K̄(u0).

Proof of Theorem 69.i. Γ − lim inf inequality: Consider a sequence uρ in V converging to
u in V. With no loss of generality we can assume that supρ Iρε(uρ) < ∞. Then, there
exists a subsequence ρk → 0 such that lim infk→∞ Iρkε(uρk

) = limk→∞ Iρkε(uρk
) < ∞. As

supρ Iρkε(uρk
) < ∞, we have a uniform estimate for uρk

in W 1,p(0, T ;V ) ∩ L2(0, T ;X),
hence uρk

weakly converges to u in W 1,p(0, T ;V ) ∩ L2(0, T ;X) up to a subsequence. As a
consequence, lim infρ→0 Iρε(uρ) ≥ lim infk→∞ Īε(uρk

) ≥ Īε(u).
Existence of a recovery sequence: Let u ∈ V . If u /∈ K̄(u0) or if u ∈ K(u0, u1), we can choose
uρ = u and trivially conclude that Iρε(uρ) → Īε(u) as ρ → 0. If u ∈ K̄(u0) \ K(u0, u1),
we consider a sequence of mollifiers gρ̃, namely gρ̃(t) = ρ̃−1g(t/ρ̃) with g ∈ C∞

c (R) and´
R g(t) dt = 1. We define (gρ̃ ∗ u)(t) :=

´ T
−1 gρ̃(t − s)u(s) ds by setting u(t) = u0 for

t ∈ (−1, 0) and u(t) = 0 for t ∈ R \ (−1, T ] , hence gρ̃ ∗ u(t) is well-defined for every t ∈ R.
Then we have that gρ̃ ∗u → u converges to u in W 1,p(0, T ;V ) ∩L2(0, T ;X) and in particular
(gρ̃ ∗ u)(0) → u0 in V as ρ̃ → 0.
As a next step, we define uρ̃ = gρ̃ ∗ u + u0 − (gρ̃ ∗ u)(0) + (u1 − (gρ̃ ∗ u)′(0))ζ ρ̃, where
ζ ρ̃(t) = t exp(−t/ρ̃). Note that (uρ̃)′(0) = u1 and ζ ρ̃ → 0 in W 1,p(0, T ) as ρ̃ → 0. As
a consequence, uρ̃ ∈ K(u0, u1) and uρ̃ → u in W 1,p(0, T ;V ) ∩ L2(0, T ;X) as ρ̃ → 0.
Furthermore, we have |(ζρ̃)′′|2L2(0,T ) ≤ C/ρ̃3 and (gρ̃ ∗ u)′′ = g′

ρ̃ ∗ u′, whence we deduce
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that ∥(gρ̃ ∗ u)′′∥L2(0,T ;L2(Ω)) ≤ ∥g′
ρ̃∥L1(0,T )∥u′∥L2(0,T ;L2(Ω)) ≤ C/ρ̃. By choosing ρ̃ = ρ1/s for

some s > 3, we obtain |Iρε(uρ̃) − Īε(uρ̃)| ≤ Cρ1−3/s, whose right-hand side goes to zero as
ρ → 0. On the other hand, having the strong convergences above, by means of the Dominated
Convergence Theorem, we can conclude that Iρε(uρ̃) → Īε(u) as ρ → 0.

5.6.2 Viscous limit of the doubly nonlinear wave equation
Consider any solution (uρ, ξρ, ηρ) to our target problem (5.3)-(5.7) which belongs to

[W 1,p(0, T ;V ) ∩ L2(0, T ;X)] × Lp
′(0, T ;V ∗) × L2 (0, T ;X∗) =: Y .

The aim of this subsection is to show that (uρ, ξρ, ηρ) converges (with respect to the weak
topology of Y and up to a subsequence) to (ū, ξ̄, η̄) satisfying

ξ̄ + η̄ = 0 in X∗ a.e. in (0, T ), (5.90)
ξ̄ = dV ψ(ū′) in V ∗ a.e. in (0, T ), (5.91)

η̄ = −∆ū+ f(ū) in X∗ a.e. in (0, T ), (5.92)

with initial datum ū(0) = u0.

Proof of Theorem 69.ii. First, we will show the following estimates holding for (uρ, ξρ, ηρ) ∈ Y
solving (5.3)-(5.7)

ρ1/2∥u′
ρ∥L∞(0,T ;L2(Ω)) + ∥u′

ρ∥Lp(0,T ;V ) + ∥uρ∥L∞(0,T ;X) + ∥uρ∥Lr(0,T ;Lr(Ω)) ≤ C, (5.93)
∥ηρ∥L2(0,T ;X∗) + ∥ξρ∥Lp′ (0,T ;V ∗) ≤ C. (5.94)

By comparison in (5.3), we also obtain

ρ∥u′′
ρ∥L2(0,T ;X∗)+Lp′ (0,T ;V ∗) ≤ C. (5.95)

In order to prove (5.93)-(5.94), we proceed by arguing on increments. For any arbitrary
constant τ > 0, we define a backward difference operator δτ by

δτχ(·) = χ(·) − χ(· − τ)
τ

for functions χ defined on [0, T ] with values in a vector space and t ≥ τ . Test (5.3) with
δτuρ, integrate on (τ, t) and by parts, obtaining

− ρ

2τ

ˆ t

t−τ
|u′
ρ(s)|2L2(Ω) ds+ ρ

2τ

ˆ τ

0
|u′
ρ(s)|2L2(Ω) ds+ u′

ρ(t)
ρ

τ
(uρ(t) − uρ(t− τ))

− u′
ρ(τ)ρ

τ
(uρ(τ) − uρ(0)) − ρ

2τ

ˆ t

τ

|u′
ρ(s− τ) − u′

ρ(s)|2L2(Ω) ds+
ˆ t

τ

⟨ξρ(s), δτuρ(s)⟩ ds

+ 1
2τ

ˆ t

t−τ
|∇uρ(s)|2L2(Ω) ds− 1

2τ

ˆ τ

0
|∇uρ(s)|2L2(Ω) ds− 1

2τ

ˆ t

τ

|∇uρ(s− τ) − ∇uρ(s)|2L2(Ω) ds

+
ˆ t

τ

⟨f(uρ(s)), δτuρ(s)⟩ ds = 0.
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By letting τ → 0, the regularity of uρ and the Lebesgue Differentiation Theorem allow us to
conclude that

− ρ

2 |u′
ρ(t)|2L2(Ω) + ρ

2 |u′
ρ(0)|2L2(Ω) + ρ|u′

ρ(t)|2L2(Ω) − ρ|u′
ρ(0)|2L2(Ω) + 0 +

ˆ t

0
⟨ξρ(s), u′

ρ(s)⟩ ds

+ 1
2 |∇uρ(t)|2L2(Ω) − 1

2 |∇uρ(0)|2L2(Ω) + 0 +
ˆ t

0
⟨f(uρ(s)), u′

ρ(s)⟩ ds = 0

for almost every t ∈ (0, T ). This can be rewritten as

ρ

2 |u′
ρ(t)|2L2(Ω) +

ˆ t

0
⟨ξρ(s), u′

ρ(s)⟩ ds+ 1
2 |∇uρ(t)|2L2(Ω) +

ˆ t

0
⟨f(uρ(s)), u′

ρ(s)⟩ ds

= ρ

2 |u1|2L2(Ω) + 1
2 |∇u0|2L2(Ω),

whence we obtain (5.93)-(5.94) by using the assumptions of Section 5.2.
From (5.93)-(5.95), up to not relabeled subsequences, we deduce the following convergences:

uρ → ū weakly in W 1,p(0, T ;V ) and strongly in C([0, T ];V ), (5.96)
uρ → ū weakly star in L∞(0, T ;X), (5.97)
ξρ → ξ̄ weakly in Lp′(0, T ;V ∗), (5.98)

ρu′′
ρ → ζ̄ weakly in L2(0, T ;X∗) + Lp

′(0, T ;V ∗), (5.99)
ηρ → η̄ weakly in L2 (0, T ;X∗) . (5.100)

The initial condition ū(0) = u0 follows directly from (5.96). The identification of the limit
ζ̄ ≡ 0 can be obtained as in Section 5.5. Using the same argument of Section 5.5, we can
also deduce that η̄ = −∆ū+ f(ū). It just remains to identify the limit ξ̄. In order to achieve
this, we first consider (5.88), namely
ˆ T

0

ˆ t

0
⟨ξρ(s), u′

ρ(s) − u1⟩ ds dt ≤ −
ˆ T

0
ϕ(uρ(t)) dt+ Tϕ(u0) +

ˆ T

0

ˆ t

0
⟨ηρ(s), u1⟩ ds dt

due to (5.89). Then, convergences (5.97) and (5.100) ensure that

lim sup
ρ→0

ˆ T

0

ˆ t

0
⟨ξρ(s), u′

ρ(s) − u1⟩ ds dt

≤ −
ˆ T

0
ϕ(ū(t)) dt+ Tϕ(u0) +

ˆ T

0

ˆ t

0
⟨η̄(s), u1⟩ ds dt

≤ −
ˆ T

0

ˆ t

0
⟨η̄(s), ū′(s) − u1⟩ ds dt =

ˆ T

0

ˆ t

0
⟨ξ̄(s), ū′(s) − u1⟩ ds dt ,

where we used (5.90). From the demiclosedness of the maximal monotone operator u →
dV ψ(u(·)) in V × V∗, we can conclude by Remark 71 and Lemma 70 that ξ̄(t) coincides with
dV ψ(ū′(t)) for a.a. t ∈ (0, T ).

Remark 73. Observe that, since we do not assume f to be Lipschitz continuous, solutions uρ
to (5.3)-(5.7) (as well as solutions ū to (5.28)-(5.31)) may be not unique. For this reason,
there might exist solutions uρ to (5.3)-(5.7) which cannot be recovered by means of the WIDE
approach, namely, that are not limits as ε → 0 of sequences of solutions to the regularized
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problem (5.44)-(5.50). Note that Theorem 69.ii establishes the convergence (with respect
to the weak topology of Y and up to a subsequence) of any solution (uρ, ξρ, ηρ) ∈ Y to
(5.3)-(5.7) towards a solution (ū, ξ̄, η̄) to (5.28)-(5.31) as ρ → 0. This result implies that the
same holds true for any (uρ, ξρ, ηρ) ∈ Y solution to (5.3)-(5.7) obtained as causal limit in
Section 5.5. This could be proved also starting from the estimates derived in Subsection 5.4.4
which are uniform in ρ > 0.

5.7 Time-discretization of the WIDE approach
In this section, we introduce a time-discretization technique. We follow the strategy outlined
in [78], in particular we investigate a time-discrete version of the WIDE principle. We replace
the WIDE functional Iλρε by a time-discrete WIDE functional I(τ)

ρε .

For the sake of notational simplicity, in this Section we omit the subscript λ. In particular, in
the following Iρε and ϕ stand for Iλρε and ϕλ, respectively.

We recall the notation for the constant time-step τ := T/n (n ∈ N) and we introduce

Vτ :=
{︂
(u(0), ..., u(n)) ∈ V n+1 : (u(2), ..., u(n−2)) ∈ Xn−3

}︂
.

We define the time-discrete WIDE functional I(τ)
ρε : Vτ → R by

I(τ)
ρε (u(0), ..., u(n)) = ε2ρ

2

n∑︂
j=2

τeετ,j|δ2u(j)|2 + ε

2

n−1∑︂
j=2

τeετ,j+1ψ(δu(j)) +
n−2∑︂
j=2

τeετ,j+2ϕ(u(j)).

Here, given a vector (w(0), . . . , w(n)), δw denotes its discrete derivative, i.e., δw(j) := (w(j) −
w(j−1))/τ for j = 1, . . . , n and δ2w = δ(δw), δ3w = δ(δ2w), and so on. Furthermore,
we define the weights eετ,1, . . . , eετ,n given by eετ,i =

(︂
ε

ε+τ

)︂i
for i = 1, . . . , n, representing

a discrete version of the exponentially decaying weight t ↦→ exp(−t/ε) and thus satisfy
δeετ,i + eετ,i/ε = 0. For the sake of notational simplicity, from now on we will drop the
subscript ετ from eετ,j . Finally, we introduce the discrete counterpart of K(u0, u1), which is

Kτ (u0, u1) = {(u(0), . . . , u(n)) ∈ Vτ : u(0) = u0, ρδu
(1) = ρu1}.

The discrete WIDE functional I(τ)
ρε represents a discrete version of the original time-continuous

WIDE functional Iρε. Note that I(τ)
ρε is convex. From an application of the Direct Method we

obtain the existence of a unique discrete minimizer.

Lemma 74 (Well-posedness of the discrete minimum problem). For ε and τ small and all
u0, u1 ∈ X, the discrete WIDE functional I(τ)

ρε admits a unique minimizer in Kτ (u0, u1).

5.7.1 Discrete Euler-Lagrange system
The unique minimizer (u(0), . . . , u(n)) of the time-discrete functional I(τ)

ρε solves

ε2ρ
n∑︂
j=2

τej(δ2u(j), δ2v(j)) + ε
n−1∑︂
j=2

τej+1⟨ dV ψ(δu(j)), δv(j)⟩ +
n−2∑︂
j=2

τej+2⟨∂V ϕ(u(j)), v(j)⟩ = 0

∀(v0, . . . , vn) ∈ Kτ (0, 0).
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As a next step, we sum by parts. In particular, we obtain

ε
n−1∑︂
j=2

τej+1⟨ dV ψ(δu(j)), δv(j)⟩

= εen⟨ dV ψ(δu(n−1)), v(n−1)⟩ − ε
n−2∑︂
j=2

τ⟨δ
(︂
ej+2 dV ψ(δu(j+1))

)︂
, v(j)⟩

= εen⟨ dV ψ(δu(n−1)), v(n−1)⟩ − ε
n−2∑︂
j=2

τej+2⟨δ
(︂

dV ψ(δu(j+1))
)︂
, v(j)⟩

+
n−2∑︂
j=2

τej+2⟨ dV ψ(δu(j+1)), v(j)⟩, (5.101)

where we used the formula

εδ
(︂
ej+2 dV ψ(δu(j+1))

)︂
= εej+2δ

(︂
dV ψ(δu(j+1))

)︂
− ej+2 dV ψ(δu(j+1))

which can be deduced from δej+2 = −ej+2/ε.

From here on, one can simply follow [78, Sec. 5.2.] together with (5.101) in order to obtain
the following.

Lemma 75 (Discrete Euler-Lagrange system). Let (u(0), . . . , u(n)) ∈ Kτ (u0, u1) be the
unique minimizer of the discrete WIDE functional I(τ)

ρε . Then, (u(0), . . . , u(n)) solves

ε2ρδ4u(j+2) − 2ερδ3u(j+1) + ρδ2u(j) − εδ
(︂

dV ψ(δu(j+1))
)︂

+ dV ψ(δu(j+1)) + ∂V ϕ(u(j)) = 0, (5.102)

subject to the initial and final conditions

u(0) = u0, ρδu(1) = ρu1, (5.103)
ε2ρδ2u(n) = 0, ε2ρδ3u(n) = ερδ2u(n−1) + ε dV ψ(δu(n−1)). (5.104)

The system of equations (5.102)–(5.104) is the discrete analogue of (5.44)–(5.50).

5.7.2 Discrete estimate
The argument of Subsection 5.4.4 can be made rigorous at the time-discrete level. We present
here a time-discrete version of the estimate (5.54) by using the time-discrete Euler-Lagrange
system (5.102)–(5.104). Namely, we prove the following estimate.

Lemma 76 (Discrete estimate). Let (u(0), . . . , u(n)) minimize the discrete WIDE functional
I(τ)
ρε over Kτ (u0, u1). Then, for all ε and τ sufficiently small we have

ρε
4 − 3ε

2

n−2∑︂
k=2

τ |δ2u(k)|2+ρ1 − 3ε
2 |δu(n−2)−u1|2+

n−2∑︂
k=2

τψ(δu(k))+c
n−2∑︂
k=2

τϕ(u(k)) ≤ C (5.105)

for some constant 0 < c < 1.
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Proof. We argue by reproducing the estimate of Subsection 5.4.4 at the discrete level, i.e., we
perform the following:

n−2∑︂
k=2

τ(5.102) × (δu(k) − u1) +
n−2∑︂
k=2

τ

⎛⎝ k∑︂
j=1

τ(5.102) × (δu(j) − u1)
⎞⎠ .

Most of the computations have been already performed in [78, Subsec. 5.3], hence we refer to
the Proof of Lemma 5.3 in [78, Subsec. 5.3] for the contributions deriving from the first three
terms in (5.102).
Here, we deal with the terms involving the nonquadratic functional ψ. First, for k ≤ n− 2, by
adding a null term, we compute

− ε
k∑︂
j=1

τ⟨δ
(︂

dV ψ(δu(j+1))
)︂
, δu(j) − u1⟩

= ε
k∑︂
j=2

⟨ dV ψ(δu(j+1)), δu(j+1) − δu(j)⟩ − ε⟨ dV ψ(δu(k+1)), δu(k+1) − u1⟩

+ ε⟨ dV ψ(δu(2)), δu(2) − u1⟩.
Additionally, we have

k∑︂
j=2

⟨ dV ψ(δu(j+1)), δu(j+1) − δu(j)⟩

≥
k∑︂
j=2

ψ(δu(j+1)) −
k∑︂
j=2

ψ(δu(j)) = ψ(δu(k+1)) − ψ(δu(2)).

Combining this together with the argument of Lemma 5.3 in [78, Subsec. 5.3], we obtain the
discrete analogous of (5.53), namely

ρε
4 − 3ε

2

n−2∑︂
k=2

τ |δ2u(k)|2 + 2ερ
n−2∑︂
k=2

τ
k∑︂
j=2

τ |δ2u(j)|2 + ρ
1 − 3ε

2 |δu(n−2) − u1|2 + ρ

2

n−2∑︂
k=2

τ |δu(k) − u1|2

+ (1 − ε)
n−2∑︂
k=2

τ⟨ dV ψ(δu(k+1)), δu(k+1) − u1⟩ +
n−2∑︂
k=2

τ
k∑︂
j=2

τ⟨ dV ψ(δu(j)), δu(j) − u1⟩

+ εψ(δu(n−1)) + ε
n−2∑︂
k=2

τψ(δu(k)) + ϕ(δu(n−2)) +
n−2∑︂
k=2

τϕ(u(k))

≤ ε(1 + T )ψ(u1) + τψ(u1) + (1 + T )ϕ(u0)

+
n−2∑︂
k=2

τ⟨∂V ϕ(u(j)), u1⟩ +
n−2∑︂
k=2

τ
k∑︂
j=2

τ⟨∂V ϕ(δu(j)), u1⟩.

Using the fact that ⟨ dV ψ(δu(j)), δu(j) − δu1⟩ ≥ ψ(δu(j)) − ψ(δu1) together with ψ, ϕ ≥ 0,
we deduce

ρε
4 − 3ε

2

n−2∑︂
k=2

τ |δ2u(k)|2 + ρ
1 − 3ε

2 |δu(n−2) − u1|2 +
n−2∑︂
k=2

τψ(δu(k+1)) +
n−2∑︂
k=2

τϕ(u(k))

≤
(︃
ε+ τ + T + T 2

2

)︃
ψ(u1) + (1 + T )ϕ(u0)

+
n−2∑︂
k=2

τ⟨∂V ϕ(u(j)), u1⟩ +
n−2∑︂
k=2

τ
k∑︂
j=2

τ⟨∂V ϕ(δu(j)), u1⟩.

Finally, the same argument of Subsection 5.4.4 allows us to obtain (5.105).
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5.7. Time-discretization of the WIDE approach

5.7.3 Discrete-to-continuum convergence
In order to obtain the inequality (5.54) we need to show that the time-discrete energy
estimate (5.105) passes to the limit as τ → 0 (for fixed ε > 0). To this aim, we need the
discrete-to-continuum Γ-convergence I(τ)

ρε
Γ→ Iρε with respect to the strong topology of

K := H2(0, T ;L2(Ω)) ∩W 1,p(0, T ;V ) ∩ L2(0, T ;X).

Following the strategy outlined in [78, Subsec. 5.4], one can prove the following

Proposition 77 (Discrete-to-continuum Γ-convergence). Let

Xτ := {u : [0, T ] → X : u is piecewise affine on the time partition}

and define the functionals Īρε, Ī
(τ)
ρε : K → [0,∞] as

Īρε(u) :=

⎧⎨⎩Iρε(u) if u ∈ K(u0, u1),
∞ elsewhere,

Ī
(τ)
ρε (u) :=

⎧⎨⎩I(τ)
ρε (u(0), u(τ), . . . , u(T )) if u ∈ Xτ ∩K(u0, u1),

∞ elsewhere.

Then, Ī(τ)
ρε Γ-converges to Īρε with respect to the strong topology of K.

Note that Proposition 77 is the analogous of Lemma 5.4 in [78, Subsec. 5.4] in our nonquadratic
setting. As a consequence, the proof of Proposition 77 can be obtained by reproducing that of
Lemma 5.4 in [78, Subsec. 5.4] to our setting. We hence refrain from providing a discussion
of this part.

As last step, we observe that the minimizers uετ of the discrete functional Ī(τ)
ρε fulfill the

estimate (5.105) and are hence weakly precompact in K. Since Ī(τ)
ρε Γ-converges to Īρε with

respect to the same topology by Lemma 77, from the fundamental theorem of Γ-convergence
(see [20, Sec. 1.5]) it follows that uετ → uε weakly in K, where uε is the unique minimizer of
Īρε. Furthermore, estimate (5.105) passes to the limit, so that the inequality (5.54) is proved.
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