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Abstract

This thesis is concerned with a non-isothermal Cahn-Hilliard model based on a
microforce balance. The model was derived by A. Miranville and G. Schimperna
starting from the two fundamental laws of Thermodynamics, following M. Gurtin’s
two-scale approach. The main working assumptions are made on the behaviour of
the heat flux as the absolute temperature tends to zero and to infinity. A suitable
Ginzburg-Landau free energy is considered. Local-in-time existence for the initial-
boundary value problem associated to the entropy formulation and, in a subcase,
also to the weak formulation of the model is proved by deriving suitable a priori
estimates and showing weak sequential stability of families of approximating solu-
tions. At last, some highlights regarding a possible approximation of the system
are given.

La tesi tratta un modello di tipo Cahn-Hilliard non-isotermo basato su un bilancio
di microforze. Il modello è stato derivato da A. Miranville e G. Schimperna partendo
dalle due leggi fondamentali della Termodinamica, seguendo l’approccio a due scale
dovuto a M. Gurtin. Le principali ipotesi di lavoro riguardano il comportamento
della legge di flusso di calore al tendere della temperatura assoluta a zero e a infinito.
L’energia libera considerata ha un’espressione opportuna di tipo Ginzburg-Landau.
L’esistenza locale in tempo per il problema ai dati iniziali e al bordo associato alla
fomulazione entropica e, in un sottocaso, anche debole del modello è dimostrata
derivando opportune stime a priori e mostrando la stabilità debole sequenziale delle
famiglie di soluzioni approssimanti. Infine, si presentano alcuni aspetti rilevanti di
una possibile approssimazione del sistema.
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Introduction

In material sciences, when a binary alloy (e.g., Aluminium/Zinc or Iron/ Chromium)
is cooled down su�ciently, the two components spontaneously separate and form
domains pure in each component. In other words, the initially homogeneous mate-
rial quickly becomes inhomogeneous, forming a fine-grained microstructure, which
then coarsens at a slower time scale.
In 1958, J.W. Cahn and J.E. Hilliard derived a model to describe important qualita-
tive features of two-phase systems related with phase separation processes (see [11]),
obtaining a conservation law which describes the transport of atoms between unit
cells. Their approach is based on di�use interface models, i.e., the interface be-
tween two coexisting phases is replaced by a thin interfacial region. Therefore, a
partial mixing of the two components is allowed. Furthermore, their model assumes
isotropy and constant temperature, i.e., that the process, caused by instantaneous
quench under a critical temperature, is isothermal. Hence, only di�usive phenom-
ena are taken into account.
The Cahn–Hilliard system is now quite well understood, at least from a mathe-
matical point of view. In particular, one has a rather complete picture as far as
the existence, the uniqueness and the regularity of solutions and the asymptotic
behaviour of the associated dynamical system are concerned.
In 1986, M. Gurtin made several remarks on the phenomenological derivations of
the Cahn–Hilliard system. From his point of view, such derivations obscure the
fundamental nature of balance laws in any general framework that includes dissi-
pation. Based on these observations, Gurtin proposed in [31] several generalizations
of the isothermal Cahn-Hilliard equation. More precisely, a relevant feature which
distinguishes his approach from other macroscopic theories of order parameters is
the separation of balance laws from constitutive equations and the introduction of
a new balance law for internal microforces, i.e., forces at an atomistic level.
Isothermal Cahn-Hilliard models take into account only di�usive phenomena, as-
suming that the process is caused by an instantaneous quench under a critical
temperature. However, in realistic physical systems, quenches are carried out over
a finite period of time and an external thermal activation can be used to control
the process. These reasons lead to the introduction of non-isothermal Cahn-Hilliard
models.
In 1992, H.W. Alt and I. Paw�low proposed and studied the existence of solutions
for a mathematical model of phase separation that describes coupled phenomena
of mass di�usion and heat conduction in binary systems under thermal activation
(see [2]- [3]). Indeed, their aim was to extend the Cahn-Hilliard approach to the
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non-isothermal setting by accounting for the dynamics of energy transfer. Con-
stitutive relations for the mass flux, the heat flux and the chemical potential are
postulated, and the derivation of the model follows from the mass and the energy
balance laws. The consistency with the first and the second principle of Thermo-
dynamics is shown a posteriori and it is essentially a theorem.
In 2005, following M. Gurtin’s approach, A. Miranville and G. Schimperna extended
the previous non-isothermal model derived by Alt and Paw�low to non-isotropic ma-
terials and to systems that are far from equilibrium (see [43]). Their approach is
a two-scale one and the two fundamental laws of Thermodynamics are used as a
starting point to derive the model. Furthermore, no a priori specification of the
constitutive equations for the mass flux, the heat flux and the chemical potential is
made. Rather, these quantities are kept in an implicit form and only a list of inde-
pendent constitutive variables upon which they are allowed to depend is specified.
It is only a posteriori that the admissible expressions for the physical parameters
are deduced. Thus, this kind of procedure seems to be the one that may allow us
to describe the most general class of free energies and of chemical potentials which
are compatible with the fundamental laws.
The mathematical analysis of Miranville and Schimperna’s system of equations
seems rather involved. At least to our knowledge, a result regarding the existence
of (weak) solutions to this non-isothermal Cahn-Hilliard model is still lacking. How-
ever, once suitable assumptions are made, it is possible to collect some formal a
priori estimates holding for hypothetical solutions to the strong formulation of
the model, or more precisely, to a proper regularization or approximation of it.
Therefore, by compactness arguments, one can show that at least a subsequence of
approximate solutions converges in a suitable way to a so-called entropy solution
to the initial-boundary value problem and, in a subcase, also to a weak one. This
procedure will allow us to prove two main existence theorems regarding entropy
and weak solutions to Miranville and Schimperna’s non-isothermal Cahn-Hilliard
model, respectively.
At last, we could wonder about a suitable approximation of the strong formulation
of the model. Since the system of equations is rather complex, then the related ap-
proximation could be particularly long and technical. However, we will give some
highlights regarding a possible way to get an existence result for a regularized
scheme. The details of such a procedure may be the object of future work.
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A synopsis of the thesis is the following:
In Chapter 1, we shall provide an overview of Cahn-Hilliard models. Section 1.1 con-
cerns the isothermal case. In Subsection 1.1.1, we will introduce the Cahn-Hilliard
equation and present its standard phenomenological derivation. Afterwards, in Sub-
section 1.1.2, we will focus on Gurtin’s generalizations of the isothermal Cahn-
Hilliard equation, whose derivation is based on a two-scale approach. As for Sec-
tion 1.2, it concerns non-isothermal Cahn-Hilliard models. In Subsection 1.2.1, we
will introduce the model of non-isothermal phase separation proposed by Alt and
Paw�low, presenting its derivation and proving its thermodynamic consistency. Fol-
lowing Gurtin’s approach, in Subsection 1.2.2, we will derive the non-isothermal
Cahn-Hilliard model based on a microforce balance proposed by Miranville and
Schimperna. In Subsection 1.2.3, we will provide some thermodynamically reason-
able expressions for the Helmholtz free energy density. We will compute Alt and
Pawlow’s system of equations and Miranville and Schimperna’s one for two di�er-
ent specific choices and we will outline the main di�erences.
Chapter 2 deals with the mathematical analysis of Miranville and Schimperna’s
non-isothermal Cahn-Hilliard model. Section 2.1 concerns the setting of the prob-
lem. In particular, we will specify suitable initial and boundary conditions, which
are consistent with the physical derivation of the model and lead to the conser-
vation of mass, the balance of energy and that of entropy. In Section 2.2, we will
list the assumptions and the hypotheses made and we will present the so-called
entropy and weak formulations of the problem. Afterwards, we will state the main
results of the thesis in the form of two main existence theorems. The proof of the
theorems begins in Section 2.3, where we will prove some formal a priori bounds
holding for a hypothetical solution to the strong formulation of the model, or more
precisely, to a proper approximation of it. In Subsection 2.3.1, we will deduce the
so-called energy and entropy estimates, while, in Subsection 2.3.2, the so-called
key estimates. In Section 2.4, by weak compactness arguments, we will collect con-
vergence properties for a sequence of approximate solutions so that, in Subsection
2.4.2, we will show that at least a subsequence converges to an entropy solution
to the initial-boundary value problem and, in a subcase, also to a weak one. As
for Section 2.5, we will try to weaken a hypothesis in order to generalize the main
existence theorems. However, we will see that some a priori bounds would not hold
true anymore, but we will propose a strategy to overcome this problem. At last, in
Section 2.6, we will give some highlights regarding a possible approximation of the
“strong” system that one could try to develop.
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Chapter 1
Cahn-Hilliard models

The aim of this chapter is to provide an overview of models of mathematical physics
which describe the phase transition processes occurring, for instance, when a binary
alloy is cooled down su�ciently. As a starting point, we introduce the isothermal
Cahn-Hilliard equation, as originally derived by J.W. Cahn and J.E. Hilliard in
1958. Subsequently, several generalizations have been proposed such as that by M.
Gurtin based on a two-scale approach and thus on a microforce balance. Isothermal
Cahn-Hilliard models take into account only di�usive phenomena, assuming that
the process is caused by an instantaneous quench under a critical temperature.
However, in realistic physical systems, quenches are carried out over a finite period
of time and an external thermal activation can be used to control the process.
These reasons lead to the introduction of non-isothermal Cahn-Hilliard models.
In particular, we will focus on the non-isothermal model derived by H.W. Alt
and I. Paw�low and on that by A. Miranville and G. Schimperna, comparing them
and outlining the main di�erences once specific choices of the so-called Ginzburg-
Landau free energy are made.

1.1 Isothermal Cahn-Hilliard models

This section is devoted to the introduction of isothermal Cahn-Hilliard models,
which play an important role in material sciences in the description of qualita-
tive features of two-phase systems related with phase separation processes. Firstly,
in Subsection 1.1.1, we focus on the phenomenological aspects and the standard
derivation of the Cahn-Hilliard equation, presenting also one of its immediate gener-
alizations: the case with nonconstant mobility. Then, in Subsection 1.1.2, we present
M. Gurtin’s objections to the standard derivation and his two-scale approach which
lead to the generalized Cahn-Hilliard equation.

1.1.1 Introduction to Cahn-Hilliard equation

In material sciences, when a binary alloy (e.g., Aluminium/Zinc or Iron/ Chromium)
is cooled down su�ciently, one can observe a partial nucleation, i.e., the apparition
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of nuclides in the material, or a total nucleation, the so-called spinodal decomposi-
tion. The initially homogeneous material quickly becomes inhomogeneous, forming
a fine-grained microstructure. In a second stage, which is known as coarsening
and occurs at a slower time scale, these microstructures coarsen. In other words,
binary systems under quenching are brought from one-phase equilibrium to non-
equilibrium states which are located within the coexistence region of their phase
diagrams. Then, activated by composition fluctuations, the systems evolve to a
new equilibrium that comprises two coexisting phases. This contributes to a local
separation of the phases and creation of a spatially heterogeneous structure. Such
phenomena play an essential role in determining the mechanical properties of the
material, e.g., strength, hardness, resistance to fracture, toughness and ductility.

In 1958, J.W. Cahn and J.E. Hilliard proposed a system of equations which de-
scribes important qualitative features of two-phase systems related with phase sep-
aration processes (see [11]). Assuming the interface between two coexisting phases
to be a 2-dimensional su�ciently smooth surface, as done in the so-called sharp in-
terface models, analytical problems related to the interface singularities could arise.
Thus, Cahn and Hilliard adopted an alternative approach based on di�use inter-
face models. In this setting, the sharp interface, represented by a lower-dimensional
surface, is replaced by a thin interfacial region, whose thickness is related to a small
parameter – > 0. Therefore, a partial mixing of the two components is allowed. In
order to describe this phenomenon, a new variable u is introduced. This quantity
may represent a rescaled density of atoms or concentration of one of the material’s
components.
The Cahn-Hilliard system consists of a conservation law which describes the trans-
port of atoms between unit cells. The model assumes isotropy and constant tem-
perature, i.e., that the process, caused by instantaneous quench under a critical
temperature, is isothermal. Hence, only di�usive phenomena are taken into ac-
count.

As a starting point we should underline that we consider a bounded, open sub-
set � µ R3 with a smooth boundary ˆ� as the domain occupied by the material.
As for time, it plays the same role as in Classical Mechanics, namely it is an ex-
ternal parameter, not a coordinate. In particular, we consider a finite time interval
[0, T ] µ R+. We denote by (x, t) an arbitrary point belonging to � ◊ (0, T ), while
by Ò and by � the spatial gradient and Laplacian, respectively.

The Cahn–Hilliard system can be written as

ˆu

ˆt
= m�µ, m > 0, (1.1)

µ = ≠–�u + f(u), – > 0, (1.2)

in � ◊ (0, T ), which can be restated, equivalently, as the fourth-order in space
parabolic equation

ˆu

ˆt
+ –m�2

u ≠ m�f(u) = 0 (1.3)
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1.1. Isothermal Cahn-Hilliard models

in �◊(0, T ). Here, u is the so-called order parameter, i.e., it represents the di�erence
between the rescaled densities of atoms or concentrations of the two material’s
components. At least in principle, u should take values between ≠1 and 1; the
values ≠1 and 1 correspond to the pure states. µ is the chemical potential or,
more precisely, the di�erence of chemical potentials between the two components.
m > 0 is the mobility, while – > 0 is related to the surface tension at the interface,
i.e., capillarity. Furthermore, f is the derivative of “coarse-grained” free energy
F , a double-well potential whose wells correspond to pure phases configurations. A
thermodynamically relevant potential F is the following logarithmic function which
follows from a mean-field model:

F (u) = ≠◊cu
2 + ◊ [(1 ≠ u) log(1 ≠ u) + (1 + u) log(1 + u)] ,

u œ (≠1, 1), 0 < ◊ < ◊c , (1.4)

i.e.
f(u) = ≠2◊cu + ◊ log 1 + u

1 ≠ u
. (1.5)

The logarithmic terms correspond to the entropy of mixing and ◊ and ◊c are pro-
portional to the absolute temperature (assumed constant during the process) and
a critical temperature, respectively. The condition ◊ < ◊c ensures that F has a
double-well form and that phase separation can occur. Indeed, at temperatures
◊ Ø ◊c, F would be convex in u reflecting a continuous solubility range of the sys-
tem. On the contrary, under the critical temperature ◊c, a miscibility gap arises,
and F assumes a double-well form.

In Figure 1.1, the potential F and its phase diagram are represented as a func-
tion of u at fixed temperatures ◊1 > ◊c and ◊2 < ◊c, and as a function of u and ◊,
respectively.
For fixed ◊1 > ◊c, F has only one minimum point um, that is the mean value of the
concentration, i.e., 1

Vol(�)
s

� u dx = um . Observe that, when F is given by (1.4),
um = 0 .

For fixed ◊2 < ◊c, the concentrations ue1 and ue2 correspond to the minimum points
of F , i.e., its equilibrium points. Such concentrations have identical chemical poten-
tials and may coexist. By varying ◊2, the locus of the concentration values ue1 and
ue2 determines the coexistence curve in the (u, ◊)-plane, referred to as the binodal.
The region above the binodal represents stable single phase states, while its com-
plement refers to states that are not thermodynamically stable. The concentrations
us1 and us2 are the inflection points of F . By varying ◊2, the locus of the concen-
tration values us1 and us2 determine a curve referred to as the spinodal. This curve
separates the metastable and unstable subregions where the second derivative of F

with respect to u is positive and negative, respectively, namely we have f
Õ(u) > 0

or f
Õ(u) < 0.

Referring to the phenomenology, when the initially homogenous system is quenched
below the critical temperature ◊c, it undergoes separation into two phases. For in-
ner states of the spinodal, the path to phase separation is traditionally classified
as spinodal decomposition, whereas in the metastable region as nucleation.
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u

F (u)

um

ue1 ue2

◊2

◊c

u

◊

us1 us2

◊2 < ◊c

◊1 > ◊c

Figure 1.1: F at ◊1 > ◊c and ◊2 < ◊c, and phase diagram of F .

At last, note that, when the absolute temperature is close to the critical one,
the double-well potential F can be approximated by more regular ones (see Figure
1.2). Typical choices are given by

F (u) = 1
4(u2 ≠ 1)2

, (1.6)

i.e.,
f(u) = u

3 ≠ u ; (1.7)
or more generally,

F (u) = 1
4(u2 ≠ —

2)2
, — œ R. (1.8)

u

F (u)

Figure 1.2: logarithmic potential (—) for ◊ < ◊c and polynomial potential (- -).

4



1.1. Isothermal Cahn-Hilliard models

Derivation of Cahn-Hilliard equation

From a phenomenological point of view, the Cahn–Hilliard system (1.1)-(1.2) can
be derived as follows.

Firstly, a total Helmholtz free energy, that is called Ginzburg–Landau free en-
ergy, is considered; i.e.,

�(u, Òu) =
⁄

�

1
–

2 |Òu|2 + F (u)
2
dx , (1.9)

where � µ R3 is the domain occupied by the material.
The gradient term in (1.9) has been proposed in [11] in order to model the surface
energy of the interface, i.e., capillarity. Indeed, it has a smoothing e�ect on inter-
faces between di�erent phases. In consequence, jumps of u are not allowed, instead
di�erent phases are separated by (thin) layers, which are small subregions with
rapid change of u. The thickness of these layers is related to the value of – (typi-
cally it goes as

Ô
–). As already observed, Cahn-Hilliard model is then thought as

a di�use interface model. Although, the Cahn–Hilliard model approaches a sharp-
interface limit when the interfacial thickness is reduced below a threshold while
other parameters are fixed (see e.g [52]).
Next, consider the mass balance

ˆu

ˆt
= ≠ div j , (1.10)

where j is the mass flux which is related to the chemical potential µ by the following
postulated constitutive equation which resembles Fick’s law:

j = ≠mÒµ , (1.11)

where m is the di�usive mobility.
The chemical potential is usually defined as the partial derivative of the Helmholtz
free energy with respect to the order parameter u. Here, such a definition is in-
compatible with the presence of Òu in the free energy. Instead, µ is defined as a
variational derivative of the free energy functional (1.9) with respect to u. This
variational derivative can be formally computed by observing that, if ”u represents
a “small” increment of u,

”� =
⁄

�
(–Òu · Ò”u + f(u)”u)dx

Assuming proper boundary conditions, it yields

”� =
⁄

�
(≠–�u + f(u))”u dx .

Hence,
µ = ”�

”u
= ≠–�u + f(u) , (1.12)

and the Cahn–Hilliard equation (1.3) follows. Observe that (1.3) can be equivalently
rewritten as

ˆu

ˆt
+ –m�2

u ≠ Ò · (mf
Õ(u)Òu) = 0
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in � ◊ (0, T ). Thus, the di�usion coe�cient is given by mf
Õ(u). Note that, below

the critical temperature ◊c, it becomes negative for us1 < u < us2 , contributing to
an unstable development of the process (see Figure 1.1).

Boundary and initial conditions

The Cahn–Hilliard system (1.1)-(1.2), in a bounded and regular domain �, is usu-
ally associated with Neumann boundary conditions, namely,

Òµ · ‹ = 0 on ˆ�, (1.13)
Òu · ‹ = 0 on ˆ�, (1.14)

where ‹ is the unit outer normal to the boundary. Since j ·‹ = ≠mÒµ ·‹, it follows
from the first boundary condition that there is no mass flux at the boundary. In
particular, the conservation of mass holds, i.e., of the spatial average of the order
parameter, obtained by formally integrating (1.1) over �:

Èu(t)Í © 1
Vol(�)

⁄

�
u(x, t)dx = Èu(0)Í, ’t œ [0, T ] . (1.15)

As for the second boundary condition, it is a natural variational boundary condi-
tion prescribing that the interface is orthogonal to the boundary. In other words,
it allows to write down a convenient variational/weak formulation in view of the
mathematical analysis of the problem.
Otherwise, we could consider periodic boundary conditions. In this case � =
�3

i=1(0, Li), Li > 0, i = 1, 2, 3, and the conservation of mass still holds. Periodic
boundary conditions are often chosen in order to approximate a large (infinite)
system by using a small part called a unit cell. Moreover, they lead to some sim-
plifications from the mathematical point of view.
Note that generally Dirichlet boundary conditions are not associated with the
Cahn-Hilliard equation, due precisely to the fact that they do not yield the con-
servation of mass, although such boundary conditions certainly simplify the math-
ematical analysis.
The model is completed by appropriate initial conditions:

u(x, 0) = u0(x), ’x œ � ,

whose mean value
Èu0Í = um

is conserved over time if a Neumann or periodic boundary condition for µ is as-
sumed, as already observed above.

The Cahn–Hilliard system is now quite well understood, at least from a mathe-
matical point of view. In particular, one has a rather complete picture as far as the
existence, the uniqueness and the regularity of solutions and the asymptotic behav-
ior of the associated dynamical system are concerned. Among the huge literature,
we refer the reader to, e.g., [12, 13,15,17,21,28,29,41,42,44–46,67].
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1.1. Isothermal Cahn-Hilliard models

Cahn-Hilliard equation with nonconstant mobility

Note that we have assumed so far the mobility m to be a positive constant. Actually,
m is often expected to depend on the order parameter and to degenerate at the
singular points of f in the case of a logarithmic nonlinear term (see [19, 20, 26]).
This essentially restricts the di�usion process to the interfacial region, which is
observed, typically, in physical situations in which the movements of atoms are
confined to this region (see [54]). In that case, (1.1) reads

ˆu

ˆt
= div(m(u)Òµ)

in � ◊ (0, T ), where, typically,

m(s) = 1 ≠ s
2
, or more generally, m(s) = (1 ≠ s

2)”
, ” > 0 .

The existence of solutions to the Cahn–Hilliard equation with degenerate mobilities
and logarithmic nonlinearities is proved in [19]. Up to now, only existence of weak
solutions is known, whereas existence of strong solutions and uniqueness are still
open issues, especially in higher space dimension. The asymptotic behaviour of
the Cahn–Hilliard equation with nonconstant and nondegenerating mobilities is
studied in [59,61].

1.1.2 Cahn–Hilliard models based on a microforce balance

This section concerns some models derived by M. Gurtin in [31].
Actually, Gurtin makes several remarks on the phenomenological derivations of the
Cahn–Hilliard equation such as that presented in Section 1.1.1. He notes that such
derivations should not be regarded as basic, rather as a precursor of more complete
theories.

From Gurtin’s point of view, while variational derivatives often point the way
toward a correct statement of basic laws, such derivations obscure the fundamental
nature of balance laws in any general framework that includes dissipation.
In particular, he makes the following objections to the classical isothermal theory:

• It limits the manner in which rate terms enter the equations.

• It requires a priori specification of the constitutive equations for the mass flux
(and for the heat flux in the non-isothermal case). Gurtin further notes that
such postulated constitutive equations may no longer be valid if the system is
far from equilibrium. Indeed, the mass flux (1.11) resembles Fick’s law, which
is essentially valid close to equilibrium.

• It is not clear how it can be generalized in the presence of processes such as
deformations, e.g., for elastic solids, or heat transfers. Recall indeed that, in
real systems, quenches are carried out over a certain period of time and the
phase separation can occur before the final temperature is reached.
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• There is no clear separation between basic balance laws, such as those for mass
and forces, and constitutive equations, such as those for elastic solids and
viscous fluids, which delineate specific classes of material behaviours. Such a
separation is one of the major advances in nonlinear continuum mechanics
over the past thirty years.

• It is not clear whether or not there is an underlying balance law which can
form a basis for more complete theories.

Based on these observations, Gurtin proposes in [31] several generalizations of the
isothermal Cahn-Hilliard equation. More precisely, a relevant feature which distin-
guishes his approach from other macroscopic theories of order parameters is the
separation of balance laws from constitutive equations and the introduction of a
new balance law for internal microforces, i.e., forces at an atomistic level.

His approach is based on the belief that fundamental physical laws involving
energy should account for the working associated to each operative kinematical pro-
cess. In Cahn-Hilliard theory the kinematics is associated with the order-parameter
u. Therefore, it seems plausible that there should be “microforces” whose working
accompanies changes in u. Indeed, if the only manifestation of atomistic kinemat-
ics is the order-parameter u, then it seems reasonable that such interatomic forces
may be characterized macroscopically by fields that perform work when u under-
goes changes. This working is described through terms of the form (force)ˆu

ˆt
, so

that microforces are scalar rather than vector quantities. Specifically, the micro-
force system is characterized by a vector stress ’ together with scalar body force fi

and “ that represent, respectively, internal and external forces distributed over the
volume of � µ R3, the domain occupied by the material. To describe the precise
manner in which these fields expend power it is useful to consider the body as a
lattice or network together with atoms that move, microscopically, relative to the
lattice (see [35]). Note that it is important to focus attention not on individual
atoms but on configurations (i.e., arrangements or densities) of atoms as charac-
terized by the order parameter u.

Given an arbitrary control volume R µ �, with ‹ the outward unit normal to
the boundary ˆR, each of

⁄

ˆR
(’ · ‹)ˆu

ˆt
d‡ ,

⁄

R
fi

ˆu

ˆt
dx ,

⁄

R
“

ˆu

ˆt
dx ,

represents an expenditure of power on the atomic configurations within R. In par-
ticular, (’ · ‹)ˆu

ˆt
describes power expended across ˆR by configurations exterior

to R, but neighboring. fi
ˆu

ˆt
represents power expended on the atoms of R by the

lattice; for example, in the ordering of atoms within unit cells of the lattice or the
transport of atoms between unit cells of the lattice. As for “

ˆu

ˆt
, it describes power

expended on the atoms of R by sources external to the body. This system of forces
is presumed to be consistent with the microforce balance

⁄

ˆR
’ · ‹ d‡ +

⁄

R
(fi + “) dx = 0 , (1.16)

8



1.1. Isothermal Cahn-Hilliard models

for each control volume R µ �.
A partial motivation for the microforce balance (1.16) can be given by the fact
that, at equilibrium, the first variation of the Helmholtz free energy vanishes, i.e.

”� =
⁄

�
(ˆÒuÂ · Ò”u + ˆuÂ”u)dx = 0 .

Assuming proper boundary conditions, we then obtain the Euler-Lagrange equa-
tion div ’ + fi = 0, where ’ = ˆÒuÂ and fi = ≠ˆuÂ, which represents a static
version of the microforce balance (1.10), with ’ and fi being given constitutive rep-
resentations and “ = 0. In dynamics with general forms of dissipation there is no
such variational principle, and actually the use of a microforce balance can be seen
as an attempt to extend to dynamics an essential feature of static theories.

Gurtin’s approach is essentially a two-scale approach. If standard forces in con-
tinua are associated with macroscopic length scales, microforces describe forces
associated with microscopic configurations of atoms. These di�erent length scales
explain the need for a separate balance law for microforces. In order to have a full
description of the dynamics of the phase separation process, the microforce balance
(1.16) has to be complemented with the mass balance and a mechanical version
of the second law of Thermodynamics, which has to be expressed in a form which
takes into account the action of the internal microforces.
Furthermore, Gurtin does not introduce a constitutive equation for the mass flux
and he does not state the explicit form of the physical quantities. Rather, he keeps
these quantities in an implicit form and he just specifies a list, which is taken as
wide as possible, of independent constitutive variables upon which they are allowed
to depend. It is only a posteriori that the admissible expressions for the physical
parameters are deduced and this is done by solving a thermodynamic inequality
which arises as a direct consequence of the balance laws. In particular, this kind
of procedure allows us to describe what seems to be the most general class of free
energies and of chemical potentials which are compatible with the fundamental
laws.

Derivation of the generalized Cahn-Hilliard equation

Gurtin’s development of the Cahn-Hilliard theory begins with balance laws for
mass and microforce in conjunction with a dissipation inequality. In this sense, in
order to have a full description of the dynamics of the phase separation process,
relation (1.16) has to be complemented with the fundamental balance laws.

Let � µ R3 be the domain occupied by the material, which is supposed to be
open, bounded and with a smooth boundary ˆ�, and let [0, T ] µ R+ be a finite
time interval. Firstly, we consider the mass balance, namely

d

dt

⁄

R
udx = ≠

⁄

ˆR
j · ‹ d‡ +

⁄

R
h dx, (1.17)

for every control volume R µ �, where j is the mass flux and h is the external mass
supply. Next, we consider a version of second law of Thermodynamics appropriate
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to purely mechanical theory, which asserts that the rate at which the free energy
increases cannot exceed the sum of the work on R and the rate at which free energy
is carried into the control volume R by mass transport. Namely,

d

dt

⁄

R
Â dx Æ W(R) + M(R) (1.18)

where Â is the Helmholtz free energy density, W(R) is the rate of working of all
forces exterior to R and M(R) is the rate at which free energy is added to R by
mass transport. To motivate this version of the second law, consider the first two
laws of Thermodynamics, i.e., the balance of energy

d

dt

⁄

R
e dx = ≠

⁄

ˆR
q · ‹ d‡ +

⁄

R
r dx + W(R) + M(R) , (1.19)

and the Clausius-Duhem entropy production inequality

d

dt

⁄

R
sdx Ø ≠

⁄

ˆR

q · ‹

◊
d‡ +

⁄

R

r

◊
dx , (1.20)

in which e is the internal energy density, s is the entropy density, ◊ is the (absolute)
temperature, q is the heat flux and r is the heat supply. Since the Helmholtz free
energy density is given by the Gibbs relation

Â = e ≠ ◊s ,

assuming isothermal conditions, i.e., ◊ = constant, then multiplying (1.20) by ◊

and subtracting the resulting equation from (1.19), we obtain (1.18). In particular,
the rate of working of external forces is given by

W(R) =
⁄

ˆR
(’ · ‹)ˆu

ˆt
d‡ +

⁄

R
“

ˆu

ˆt
dx , (1.21)

while the mass transport is characterized by the chemical potential and it reads

M(R) = ≠
⁄

ˆR
µj · ‹d‡ +

⁄

R
µh dx . (1.22)

Observe that (1.21) does not include the work of fi. Indeed, inequality (1.18) holds
for the material in R, i.e., lattice plus atoms. Therefore, being fi a force exerted
by the lattice on the atoms, which acts internally to the material in R, its work is
not considered. On the other hand, (1.10) represents a force balance for the atomic
configurations and thus it includes the action of fi.
Because of the arbitrariness of the control volume R, the microforce balance (1.16)
reads

div ’ + fi + “ = 0 , (1.23)

where the vector ’ is the microstress and the scalar fi and “ correspond to the
internal and external microforces, respectively. On the other hand, using the di-
vergence theorem and the arbitrariness of the control volume R, from (1.17) we
recover

ˆu

ˆt
= ≠ div j + h . (1.24)
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1.1. Isothermal Cahn-Hilliard models

Note that ⁄

ˆR
(’ · ‹)ˆu

ˆt
d‡ =

⁄

R
div

1
ˆu

ˆt
’

2
dx

and ⁄

ˆR
µj · ‹d‡ =

⁄

R
div(µj)dx

Therefore, since the control volume R is arbitrary, from (1.18) it follows that

ˆÂ

ˆt
Æ div

1
ˆu

ˆt
’

2
≠ div(µj)

= ˆu

ˆt
div ’ + ’ · Òˆu

ˆt
≠ µ div j ≠ j · Òµ

and (1.23)-(1.24) finally yield the following dissipation inequality:

ˆÂ

ˆt
+ (fi ≠ µ)ˆu

ˆt
≠ ’ · Òˆu

ˆt
+ j · Òµ Æ 0 . (1.25)

In standard theories of di�usion the chemical potential is given, constitutively,
as a function of the order parameter u. On the contrary, if one considers systems
su�ciently far from equilibrium such that a relation of this type is no longer valid,
the chemical potential and its gradient join u and Òu in the list of independent
constitutive variables. Specifically, constitutive equations of the following form are
assumed

Â = Â(u, Òu, µ, Òµ) , j = j(u, Òu, µ, Òµ) ,

’ = ’(u, Òu, µ, Òµ) , fi = fi(u, Òu, µ, Òµ) .

If we call Z the set of independent constitutive variables, namely,

Z = (u, Òu, µ, Òµ) ,

then Â = Â(Z), j = j(Z), ’ = ’(Z) and fi = fi(Z). It follows that

ˆÂ

ˆt
= ˆuÂ

ˆu

ˆt
+ ˆÒuÂ · Òˆu

ˆt
+ ˆµÂ

ˆµ

ˆt
+ ˆÒµÂ · Òˆµ

ˆt

and the dissipation inequality (1.25) becomes

(ˆuÂ + fi ≠ µ) ˆu

ˆt
+(ˆÒuÂ ≠ ’) ·Òˆu

ˆt
+ˆµÂ

ˆµ

ˆt
+ˆÒµÂ ·Òˆµ

ˆt
+j ·Òµ Æ 0 . (1.26)

Note that (1.26) has to hold for all fields Z. Actually, it is possible to choose Z

such that Z,
ˆu

ˆt
, Òˆu

ˆt
,

ˆµ

ˆt
and Òˆµ

ˆt
take arbitrary prescribed values at some chosen

point x and time t. Therefore, since ˆu

ˆt
, Òˆu

ˆt
,

ˆµ

ˆt
and Òˆµ

ˆt
appear linearly in (1.26),

necessarily,

ˆuÂ + fi ≠ µ = 0 , (1.27)
ˆÒuÂ ≠ ’ = 0 , (1.28)
ˆµÂ = 0, ˆÒµÂ = 0 . (1.29)
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Indeed, otherwise, ˆu

ˆt
, Òˆu

ˆt
,

ˆµ

ˆt
and Òˆµ

ˆt
could be chosen to violate (1.26). It follows

that Â = Â(u, Òu), as expected, and (1.26) reads

j · Òµ Æ 0 ,

which has to hold for every field Z. This yields the existence of a matrix A = A(Z),
the so-called mobility tensor, such that (see Appendix A.1)

j = ≠A(Z)Òµ ,

and A is, in some sense, positive semi-definite:

Y · A(Z)Y Ø 0 , ’Y œ R3
.

Hence, (1.24) can be rewritten as

ˆu

ˆt
= div(A(Z)Òµ) + h . (1.30)

Furthermore, combining together (1.23), (1.27) and (1.28), it yields

µ = ˆuÂ + fi = ˆuÂ ≠ div ’ ≠ “ = ˆuÂ ≠ div ˆÒuÂ ≠ “ . (1.31)

Substituting (1.31) into (1.30), we obtain the so-called generalized Cahn-Hilliard
equation, that is

ˆu

ˆt
= div(A(Z)Ò(ˆuÂ ≠ div ˆÒuÂ ≠ “)) + h (1.32)

in � ◊ (0, T ). If we consider the Ginzburg-Landau free energy given by (1.9), i.e.,
Â = –

2 |Òu|2 + F (u), then

ˆuÂ = F
Õ(u) = f(u), ˆÒuÂ = –Òu .

Assuming null external microforce, i.e., “ = 0, it follows that the chemical potential
µ is given by the variational derivative of the total free energy, as in (1.12). Finally,
assuming null external mass supply, i.e., h = 0, (1.32) reduces to

ˆu

ˆt
= div(A(Z)Ò(≠–�u + f(u))

in � ◊ (0, T ). In particular, assuming isotropy, i.e., the mobility tensor of the form
A = mI, m > 0, we recover the standard Cahn–Hilliard equation (1.3).

1.2 Non-isothermal Cahn-Hilliard models

In isothermal Cahn-Hilliard models, which assume that the process is caused by
an instantaneous quench below a critical temperature, only di�usive phenomena
are taken into account. However, in realistic physical systems, quenches are usually
carried out over a finite period of time, so that phase separation can begin before

12



1.2. Non-isothermal Cahn-Hilliard models

the final quenching is reached. Furthermore, external thermal activation can be
used to control the separation process and the resulting spatial structure.

Di�erent models of non-isothermal phase transitions have been proposed. We
mention a model for phase separation during continuous cooling proposed by Hus-
ton et al. (see [32]), which is merely the Cahn-Hilliard equation with temperature
dependent coe�cients, and the conserved and nonconserved phase-field models
proposed by Caginalp (see [10]). In their discussion of the phase-field theory of
solidification, Penrose and Fife [53] replaced the free energy functional with an en-
tropy functional, from which they deduced kinetic equations. However, is not clear
how their derivation can be generalized in the presence of heat transfer. In 1998,
Zhiqiang Bi and Sekerka proposed in [6] a generalization of the Cahn-Hilliard equa-
tion, developing a general thermodynamically consistent phase field model based on
a proper postulated entropy functional which accounts for heat transfers. However,
this generalization follows the standard theory in the derivation of the equations.

In 1992, H.W. Alt and I. Paw�low proposed and studied the existence of solutions
for a mathematical model of phase separation that describes coupled phenomena
of mass di�usion and heat conduction in binary systems under thermal activation
(see [3]- [2]). Indeed, their aim was to extend the Cahn-Hilliard approach to the
non-isothermal setting by accounting for the dynamics of energy transfer. The
construction is based on the Landau-Ginzburg free energy functional and on Non-
equilibrium Thermodynamics. Firstly, constitutive relations for the mass and heat
fluxes are postulated and a definition for the rescaled chemical potential is provided,
then the derivation of the model follows from the mass and energy balance laws. The
proposed model has the form of a system of nonlinear parabolic partial di�erential
equations, where the concentration and the energy are conserved quantities. The
consistency with the first and the second principle of Thermodynamics is shown a
posteriori and it is essentially a theorem.
In 1996, H.W. Alt and I. Paw�low obtained more general models, making no a priori
specification on the entropy flux and obtaining the Gibbs relation as a consequence
of a weaker form of entropy inequality (see [4]). Furthermore, they derived more
general forms of the constitutive equations for the mass and heat fluxes.

In 2005, following M. Gurtin’s approach (see Subsection 1.1.2), A. Miranville
and G. Schimperna extended the previous non-isothermal model derived by Alt and
Paw�low to non-isotropic materials and to systems that are far from equilibrium
(see [43]). Their approach is a two-scale one and the two fundamental laws of
Thermodynamics are used as a starting point to derive the model. Furthermore,
no a priori specification of the constitutive equations for the mass flux, the heat
flux and the chemical potential is made. Rather, these quantities are kept in an
implicit form and only a list of independent constitutive variables upon which
they are allowed to depend is specified. It is only a posteriori that the admissible
expressions for the physical parameters are deduced. Thus, this kind of procedure
seems to be the one that may allow us to describe the most general class of free
energies and of chemical potentials which are compatible with the fundamental
laws.
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1.2.1 A mathematical model of dynamics of non-isothermal phase

separation

In this subsection we introduce the model of non-isothermal phase separation pro-
posed by Alt and Paw�low in [3]. In particular, we present its derivation and we
prove its thermodynamic consistency.

Derivation of a non-isothermal Cahn-Hilliard model

Let � µ R3, be the domain occupied by the material, which is supposed to be
open, bounded and with a smooth boundary ˆ�, and let [0, T ] µ R+ be a finite
time interval. Let u be the order parameter, whereas ◊ the absolute temperature.
The Helmholtz free energy density is assumed in the form of the Ginzburg-Landau
one (see [23]), i.e.,

Â(u, Òu, ◊) = 1
2–(u, ◊)|Òu|2 + F (u, ◊) , (1.33)

where F is the volumetric energy density of a homogeneous system and – is a
positive surface tension coe�cient possibly dependent on the concentration and
temperature. In the following, F and – are left in a general form and they are
supposed to be regular enough.
Let e denote the internal energy density of the system and s its entropy density.
The Gibbs relation

Â = e ≠ ◊s (1.34)

is postulated, with the entropy s = ≠ˆ◊Â. It follows that

e = Â ≠ ◊ˆ◊Â = 1
2(– ≠ ˆ◊–)|Òu|2 + F ≠ ◊ˆ◊F . (1.35)

In the isothermal case µ is given by the variational derivative of the total free
energy (1.9) with respect to u. This can be generalized to the non-isothermal case
by introducing the reduced chemical potential and defining it as the variational
derivative of the rescaled free energy with respect to u, that is

µ

◊
= ”

”u

1�
◊

2
, (1.36)

where �(u, Òu, ◊) =
s

� Â(u, Òu, ◊) dx and Â is given by (1.33). In other words, for
spatially non-uniform temperature fields ◊ the free energy is scaled by 1

◊
.

The variational derivative can be formally computed by noting that, for a small
variation ”u,

”

1�
◊

2
=

⁄

�

11
2

ˆu–

◊
|Òu|2”u + –Òu · Ò”u + ˆuF

◊
”u

2
dx

Assuming proper boundary conditions, it yields

”

1�
◊

2
=

⁄

�

11
2

ˆu–

◊
|Òu|2 ≠ div

1
–Òu

◊

2
+ ˆuF

◊

2
”u dx ,
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1.2. Non-isothermal Cahn-Hilliard models

whence
µ

◊
= 1

2
ˆu–

◊
|Òu|2 ≠ div

1
–Òu

◊

2
+ ˆuF

◊
. (1.37)

The mass balance is still governed by (1.10). However, in the non-isothermal case,
the balance of energy is also to be considered, that is

ˆe

ˆt
+ div q = r , (1.38)

where q is the energy flux due to heat and mass transfer, while r = r(x, t) repre-
sents the rate of distributed heat sources, i.e., the heat supply. By employing the
Non-equilibrium Thermodynamics [16], Alt and Paw�low postulate the constitutive
relations for the mass and energy fluxes in the forms

j = ≠l11Òµ

◊
+ l12Ò1

◊
, (1.39)

q = l22Ò1
◊

≠ l21Òµ

◊
, (1.40)

where the coe�cients lij = lij(u,
µ

◊
,

1
◊
), i, j = 1, 2, satisfy

l11 > 0 , l22 > 0 , l11l22 ≠ l12l21 > 0 , (1.41)

i.e., the matrix (li,j)i,j=1,2 is positive definite and it has positive diagonal elements.
Equations (1.10), (1.35), (1.37), (1.38), (1.39) and (1.40) can be summarized in the
following system that describe the dynamics of the non-isothermal phase separation

ˆu

ˆt
≠ div

1
l11Òµ

◊
≠ l12Ò1

◊

2
= 0 , (1.42)

ˆe

ˆt
+ div

1
l22Ò1

◊
≠ l21Òµ

◊

2
= r , (1.43)

µ

◊
= 1

2
ˆu–

◊
|Òu|2 ≠ div

1
–Òu

◊

2
+ ˆuF

◊
, (1.44)

e = 1
2(– ≠ ˆ◊–)|Òu|2 + F ≠ ◊ˆ◊F , (1.45)

in � ◊ (0, T ).

Boundary and initial conditions

Alt and Paw�low assumed the system to be thermodynamically closed, that is, it
may exchange only heat with its environment. The condition of mass isolation is
given by

j · ‹ = 0 on ˆ�,

where ‹ is the unit outer normal to the boundary ˆ�. As for the concentration,

Òu · ‹ = 0 on ˆ�

is imposed. For the temperature Alt and Paw�low postulate Newton’s heat exchange
through the boundary, that is

q · ‹ + p

1
u,

µ

◊
,
1
◊

2
= 0 on ˆ�,

15



where
p

1
u,

µ

◊
,
1
◊

2
= ≠p0

⁄
◊

◊ext

kb

1
u,

µ

◊Õ ,
1
◊Õ

2
d◊

Õ ≠ rb .

p0 = p0(x) is the non-negative heat exchange coe�cient, ◊ext is the external temper-
ature, kb = kb(u,

µ

◊Õ ,
1
◊Õ ) represents the e�ective heat conductivity at the boundary,

while rb = rb(x, t) is the boundary flux. Summarizing and using constitutive equa-
tions (1.39) and (1.40), the boundary conditions imposed by Alt and Paw�low are
the following

Òu · ‹ = 0 on ˆ�, (1.46)
1

≠ l11Òµ

◊
+ l12Ò1

◊

2
· ‹ = 0 on ˆ�, (1.47)

1
l22Ò1

◊
≠ l21Òµ

◊

2
· ‹ + p

1
u,

µ

◊
,
1
◊

2
= 0 on ˆ�. (1.48)

The model is completed by appropriate initial conditions ofr the concentration and
the temperature:

u(x, 0) = u0(x), ◊(x, 0) = ◊0(x), ’x œ � ,

with prescribed mean value
Èu0Í = um ,

which is conserved over time. Indeed, integrating (1.42) over � and using boundary
condition (1.47), we obtain ˆu

ˆt
= 0, which implies

Èu(t)Í = Èu(0)Í, ’t œ [0, T ] . (1.49)

Observe that there is a direct correspondence between the system of equations
deduced by Alt and Paw�low and the standard Cahn-Hilliard equation. Indeed,
assuming – = constant and r = 0, if ◊ is constant, the system of equations (1.42)-
(1.45) reduce to (1.3) with m = l11

◊
, while the boundary conditions (1.46)-(1.48)

reduce to the Neumann boundary conditions (1.13) and (1.14).

Thermodynamic consistency

The model proposed by Alt and Paw�low (1.42)-(1.48) conforms with two basic laws
of Thermodynamics.

• Balance of energy:
Integrating (1.42) over � and using the boundary condition (1.48), we obtain

d

dt

⁄

�
e dx =

⁄

�
r dx +

⁄

ˆ�
p

1
u,

µ

◊
,
1
◊

2
d‡ ,

which expresses the balance of energy.

• Clausius-Duhem inequality for the entropy production:
Multiplying (1.42) by µ

◊
, then integrating over � and using (1.47), it yields

⁄

�

µ

◊

ˆu

ˆt
dx +

⁄

�

1
l11Òµ

◊
≠ l12Ò1

◊

2
· Òµ

◊
dx = 0 . (1.50)
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On the other hand, multiplying (1.43) by 1
◊
, then integrating over � and using

(1.48), we obtain
⁄

�

1
◊

ˆe

ˆt
dx ≠

⁄

�

1
l22Ò1

◊
≠ l21Òµ

◊

2
· Ò1

◊
dx +

≠
⁄

ˆ�

1
◊

p

1
u,

µ

◊
,
1
◊

2
d‡ =

⁄

�

r

◊
dx . (1.51)

Subtracting (1.50) from (1.51), it yields
⁄

�

11
◊

ˆe

ˆt
≠ µ

◊

ˆu

ˆt

2
dx ≠

⁄

ˆ�

1
◊

p

1
u,

µ

◊
,
1
◊

2
d‡ ≠

⁄

�

r

◊
dx =

⁄

�

1
l11Òµ

◊
≠ l12Ò1

◊

2
· Òµ

◊
dx +

⁄

�

1
l22Ò1

◊
≠ l21Òµ

◊

2
· Ò1

◊
dx ,

whence, using conditions (1.41), i.e., that the matrix (li,j)i,j=1,2 is positive
definite, we deduce

⁄

�

11
◊

ˆe

ˆt
≠ µ

◊

ˆu

ˆt

2
dx ≠

⁄

ˆ�

1
◊

p

1
u,

µ

◊
,
1
◊

2
d‡ ≠

⁄

�

r

◊
dx Ø 0 . (1.52)

Rewriting the Gibbs relation (1.34) as s = e

◊
≠ Â

◊
and taking the partial

derivative wih respect to time, we obtain
ˆs

ˆt
= 1

◊

ˆe

ˆt
≠ 1

◊

ˆÂ

ˆt
≠ (e ≠ Â)

◊2
ˆ◊

ˆt
.

From (1.33) and (1.35) it follows
ˆÂ

ˆt
= 1

2ˆu–|Òu|2 ˆu

ˆt
+ 1

2ˆ◊–|Òu|2 ˆ◊

ˆt
+ –Òu · Òˆu

ˆt
+ ˆuF

ˆu

ˆt
+ ˆ◊F

ˆ◊

ˆt

and
e ≠ Â = ≠1

2ˆ◊–|Òu|2 ≠ ◊ˆ◊F .

Hence, we can rewrite (1.52) as
⁄

�

1
ˆs

ˆt
+ 1

2
ˆu–

◊
|Òu|2 ˆu

ˆt
+ –

◊
Òu · Òˆu

ˆt
+ ˆuF

◊

ˆu

ˆt
≠ µ

◊

ˆu

ˆt

2
dx +

≠
⁄

ˆ�

1
◊

p

1
u,

µ

◊
,
1
◊

2
d‡ ≠

⁄

�

r

◊
dx Ø 0 .

Using the boundary condition (1.46) and (1.44), we can conclude that
⁄

�

ˆs

ˆt
dx ≠

⁄

ˆ�

1
◊

p

1
u,

µ

◊
,
1
◊

2
d‡ ≠

⁄

�

r

◊
dx Ø 0 .

Finally, in view of the constitutive equation (1.40) and the boundary condi-
tions (1.48), we deduce

⁄

ˆ�

1
◊

p

1
u,

µ

◊
,
1
◊

2
d‡ =

⁄

ˆ�

q · ‹

◊
d‡ .

It follows that ⁄

�

ˆs

ˆt
dx Ø ≠

⁄

ˆ�

q · ‹

◊
d‡ +

⁄

�

r

◊
dx ,

which is the integral form of the Clausius-Duhem inequality for the entropy
production.
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1.2.2 Non-isothermal phase separation based on a microforce bal-

ance

A. Miranville and G. Schimperna in [43] extend the approach of Gurtin to the
non-isothermal case in order to derive non-isothermal Cahn-Hilliard models. In
particular, these models generalize those derived by Alt and Paw�low to anisotropic
materials and to systems that are far from equilibrium.
Following Gurtin’s approach (see Subsection 1.1.2), they derive the model by con-
sidering the microforce balance (1.16) (or (1.23)) together with the mass balance
(1.17) (or (1.24)) complemented with the two fundamental laws of Thermodynam-
ics. Clearly, these laws, and especially the energy equality, have to be expressed
in a form which takes into account the action of the internal microforces. Further-
more, they do not introduce a system of constitutive equations for the mass and
heat fluxes stating the explicit form of the physical quantities (as done by Alt and
Paw�low in [3] and in Subsection 1.2.1). Rather, still following Gurtin, they keep
these quantities in an implicit form and just specify a list of independent constitu-
tive variables upon which they are allowed to depend. It is only a posteriori that
the admissible expressions for the physical parameters are deduced by solving a
system of thermodynamic inequalities which arises as a direct consequence of the
balance laws. As already observed, this kind of procedure allows them to describe
what seems to be the most general class of free energies, of chemical potentials and
also of heat fluxes in this non-isothermal setting, which are compatible with the
fundamental laws.

Derivation of a non-isothermal Cahn-Hilliard model based on a micro-

force balance

Let � µ R3 be the domain occupied by the material, which is supposed to be open,
bounded and with a smooth boundary ˆ�, and let [0, T ] µ R+ be a finite time
interval.

In order to derive the model, we consider the two fundamental laws of Ther-
modynamics:

• Balance of energy:

d

dt

⁄

R
e dx = ≠

⁄

ˆR
q · ‹ d‡ +

⁄

R
r dx + W(R) + M(R) , (1.53)

where R µ � is an arbitrary control volume, ‹ is the unit outer normal vector
to ˆR, e is internal energy density, q is the heat flux, r is the heat supply,
W(R) is the rate of working of all forces exterior to R and M(R) is the rate
at which free energy is added to R by mass transport. The rate of working of
external forces and the mass transport are still defined as (1.21) and (1.22),
so that (1.53) can be rewritten as

d

dt

⁄

R
e dx = ≠

⁄

ˆR
q · ‹ d‡ +

⁄

R
r dx +

⁄

ˆR
(’ · ‹)ˆu

ˆt
d‡ +

+
⁄

R
“

ˆu

ˆt
dx ≠

⁄

ˆR
µj · ‹ d‡ +

⁄

R
µh d‡ .
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1.2. Non-isothermal Cahn-Hilliard models

Using Green’s formula to treat the surface integrals, we obtain

d

dt

⁄

R
e dx =

⁄

R

1
≠ div q + r + ˆu

ˆt
div ’ + ’ · Òˆu

ˆt
+

+ “
ˆu

ˆt
≠ µ div j ≠ j · Òµ + µh

2
dx .

Using the microforce balance (1.23) and the mass balance (1.24), since the
control volume R is arbitrary, we deduce

ˆe

ˆt
= ≠ div q + r + (µ ≠ fi)ˆu

ˆt
+ ’ · Òˆu

ˆt
≠ j · Òµ . (1.54)

• Clausius-Duhem entropy production inequality:

d

dt

⁄

R
sdx Ø ≠

⁄

ˆR

q · ‹

◊
d‡ +

⁄

R

r

◊
dx , (1.55)

where s is the entropy density. Noting that the control volume R is arbitrary,
(1.55) yields

ˆs

ˆt
Ø ≠ div

3
q

◊

4
+ r

◊
. (1.56)

We now multiply (1.54) by 1
◊

to obtain

ˆ

ˆt

1
e

◊

2
≠e

ˆ

ˆt

11
◊

2
= ≠ div

3
q

◊

4
+q ·Ò1

◊
+ r

◊
+

3
µ

◊
≠ fi

◊

4
ˆu

ˆt
+ ’

◊
·Òˆu

ˆt
≠ j

◊
·Òµ

Since we know from Thermodynamics that the Helmholtz free energy Â is
given by the Gibbs relation, i.e.,

Â = e ≠ ◊s,

using (1.56), we then deduce that

ˆ

ˆt

1
Â

◊

2
≠ e

ˆ

ˆt

11
◊

2
Æ q · Ò1

◊
+

3
µ

◊
≠ fi

◊

4
ˆu

ˆt
+ ’

◊
· Òˆu

ˆt
≠ j

◊
· Òµ . (1.57)

Following Gurtin’s approach and in view of the equations obtained by Alt and
Paw�low, Miranville and Schimperna choose

Z =
1
u, Òu,

µ

◊
, Òµ

◊
,
1
◊

, Ò1
◊

2
(1.58)

as independent constitutive variables. Note that, in order to obtain Alt and Paw�low’s
equations (1.42)-(1.45), we should consider Z =

1
u, Òu,

1
◊
, Ò1

◊

2
, with µ

◊
given con-

stitutively and somehow postulated, as done in (1.36), and we should assume h = 0
and “ = 0. A priori assuming that Â = Â(Z), e = e(Z), j = j(Z), ’ = ’(Z) and
fi = fi(Z), we deduce from (1.57) the following dissipation inequality:

1
ˆ 1

◊

Â

◊
≠ e

2
ˆ

ˆt

11
◊

2
≠ q · Ò1

◊
+ 1

◊
(fi ≠ µ + ˆuÂ) ˆu

ˆt
+ 1

◊
(ˆÒuÂ ≠ ’) · ˆÒu

ˆt
+

+ 1
◊

ˆ µ
◊
Â

ˆ

ˆt

1
µ

◊

2
+ 1

◊
ˆÒ µ

◊
Â · ˆ

ˆt

1
Òµ

◊

2
+ 1

◊
ˆÒ 1

◊

Â · ˆ

ˆt

1
Ò1

◊

2
+ j

◊
· Òµ Æ 0 , (1.59)
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which has to hold for every field Z. Actually, it is possible to choose Z such that
Z, ˆu

ˆt
,

ˆÒu

ˆt
,

ˆ
µ
◊

ˆt
, ˆÒ µ

◊
ˆt

, ˆ
1
◊

ˆt
and ˆÒ 1

◊
ˆt

take arbitrary prescribed values at some chosen
point x and time t. Therefore, since ˆu

ˆt
,

ˆÒu

ˆt
,

ˆ
µ
◊

ˆt
, ˆÒ µ

◊
ˆt

, ˆ
1
◊

ˆt
and ˆÒ 1

◊
ˆt

appear linearly
in (1.59), necessarily,

e = ˆ 1
◊

Â

◊
, (1.60)

fi ≠ µ + ˆuÂ = 0 , (1.61)

ˆÒuÂ ≠ ’ = 0 , (1.62)

ˆ µ
◊
Â = 0 , ˆÒ µ

◊
Â = 0 , ˆÒ 1

◊
Â = 0 . (1.63)

Indeed, otherwise, ˆu

ˆt
,

ˆÒu

ˆt
,

ˆ
µ
◊

ˆt
, ˆÒ µ

◊
ˆt

, ˆ
1
◊

ˆt
and ˆÒ 1

◊
ˆt

could be chosen to violate (1.59).
It follows that Â = Â(u, Òu, ◊), and (1.59) reads

≠ q · Ò1
◊

+ j

◊
· Òµ Æ 0 (1.64)

for every field Z. Combining together (1.23), (1.61) and (1.62), we obtain

µ = ˆuÂ ≠ div(ˆÒuÂ) ≠ “, (1.65)

whence
µ

◊
= 1

◊
ˆuÂ ≠ 1

◊
div (ˆÒuÂ) ≠ “

◊
.

Writing j

◊
· Òµ = j · Òµ

◊
≠ µj · Ò1

◊
, (1.64) becomes

≠ (q + µj) · Ò1
◊

+ j · Òµ

◊
Æ 0 (1.66)

for every field Z, which yields (see Appendix A.1)

j = ≠AÒµ

◊
≠ BÒ1

◊
, (1.67)

q + µj = CÒµ

◊
+ DÒ1

◊
, (1.68)

where the matrices A, B, C and D depend on Z and are such that (1.66) is satisfied,
i.e., A and D are, in some sense, positive semi-definite.
Using (1.61) and (1.62), we can rewrite the energy balance (1.54) as

ˆe

ˆt
= ≠ div q + r + ˆuÂ

ˆu

ˆt
+ ˆÒuÂ · Òˆu

ˆt
≠ j · Òµ ,

which, using (1.68), reads

ˆe

ˆt
= ≠ div

1
CÒµ

◊
+ DÒ1

◊

2
+ r + ˆuÂ

ˆu

ˆt
+ ˆÒuÂ · Òˆu

ˆt
+ µ div j .

Using (1.24) and (1.65), we finally obtain the energy equation

ˆe

ˆt
= ≠ div

1
CÒµ

◊
+DÒ1

◊
≠ ˆu

ˆt
ˆÒuÂ

2
+r+“

ˆu

ˆt
+h(ˆuÂ≠div(ˆÒuÂ)≠“). (1.69)
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1.2. Non-isothermal Cahn-Hilliard models

Combining together (1.24), (1.67), (1.69), (1.65) and (1.60), one obtains the fol-
lowing non-isothermal generalized Cahn-Hilliard system:

ˆu

ˆt
= div

1
AÒµ

◊
+ BÒ1

◊

2
+ h, (1.70)

ˆe

ˆt
= ≠ div

1
CÒµ

◊
+DÒ1

◊
≠ ˆu

ˆt
ˆÒuÂ

2
+r+“

ˆu

ˆt
+h(ˆuÂ≠div (ˆÒuÂ)≠“), (1.71)

µ = ˆuÂ ≠ div (ˆÒuÂ) ≠ “, (1.72)

e = ˆ 1
◊

Â

◊
= Â ≠ ◊ˆ◊Â, (1.73)

in � ◊ (0, T ).
At last, assuming null external microforces and null external mass supply, i.e., “ = 0
and h = 0, we obtain the following non-isothermal Cahn-Hilliard system:

ˆu

ˆt
= div

1
AÒµ

◊
+ BÒ1

◊

2
, (1.74)

ˆe

ˆt
= ≠ div

1
CÒµ

◊
+ DÒ1

◊
≠ ˆu

ˆt
ˆÒuÂ

2
+ r, (1.75)

µ = ˆuÂ ≠ div (ˆÒuÂ) , (1.76)

e = ˆ 1
◊

Â

◊
= Â ≠ ◊ˆ◊Â, (1.77)

in � ◊ (0, T ).

Miranville and Schimperna’s model as an extension of Alt and Pawlow’s

one

Note that the main di�erence with respect to Alt and Paw�low’s system of equa-
tions is given by the presence of the term ≠ˆu

ˆt
ˆÒuÂ in (1.75). As for the chemical

potential, observe that, following Gurtin’s approach, in (1.72) we recover the same
expression in terms of the free energy density as in the isothermal case (see (1.31)).
On the contrary, Alt and Paw�low define the reduced chemical potential as the vari-
ational derivative of the rescaled free energy with respect to the order parameter u

(see (1.36)), obtaining (1.37), i.e. µ

◊
= ˆu

Â

◊
≠ div(ˆÒu

Â

◊
). Hence, Alt and Paw�low’s

model seems to have a variational structure, at least with respect to u. However,
there is no reason why the free energy should obey a variational principle in the
non-isothermal setting (see [53]). On the other hand, since Alt and Paw�low assume
that the mass and heat fluxes depend linearly on Òµ

◊
and on Ò1

◊
, their theory can be

interpreted as a thermodynamic theory near constant equilibria µ

◊
=constant and

1
◊
= constant. On the contrary, following Gurtin’s approach, expressions for mass

and heat fluxes are found a posteriori, without providing any a priori constitutive
equation. Hence, his approach is suitable for the description of systems which are
far from equilibrium. Furthermore, because the coe�cients lij in (1.42)-(1.43) do
not depend on the gradients, Alt and Paw�low’s analysis is essentially restricted to
the case of isotropic materials. On the contrary, Miranville and Schimperna’s model
provides matrices whose coe�cients may depend on Z (see (1.58)), hence it applies
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to the case of anisotropic materials. Lastly, observe that, as for Alt and Paw�low’s
system of equations, there is a direct correspondence between that deduced by
Miranville and Schimperna and the standard Cahn-Hilliard equation. Indeed, as-
suming – = constant, A = m◊I, m > 0, I identity matrix, r = 0 and the Neumann
boundary conditions (1.13) and (1.14), if ◊ is constant, the system of equations
(1.74)-(1.77) reduce to (1.3).

1.2.3 Ginzburg-Landau free energy

In the previous subsections 1.2.1 and 1.2.2 we presented non-isothermal Cahn-
Hilliard models proposed by Alt and Pawlow and by Miranville and Schimperna
based on Gurtin’s approach, respectively. Note that no explicit expression for the
Helmholtz free energy density Â were given. However, the choice of Â plays a crucial
role in determining the explicit expression of the system of equations (1.42)-(1.45)
and that of (1.74)-(1.77). In this section, we give some examples of the free energy
Â in the form of the Ginzburg-Landau one, in part proposed by Falk in [23] and
by Alt and Pawlow in [3, 4], that match some structural assumptions in order to
be physically reasonable.

A general form of the Ginzburg-Landau free energy density Â is given by

Â(u, Òu, ◊) = –

2 |Òu|2 + F (u, ◊) , – > 0 , (1.78)

where the first term is the so-called inhomogeneous (or gradient) part, while F (u, ◊)
is the homogeneous (or volumetric) part, which is given by

F (u, ◊) = cV F1(◊) + F2(◊, u), cV > 0 . (1.79)

The first term in (1.79) represents the main concave term of the free energy and it
refers to pure heat conduction and it is linked to the specific heat CV (◊) = Q

Õ(◊)
by the relation Q(◊) = cV F1(◊) ≠ cV ◊F

Õ
1(◊), where Õ denotes the derivative with

respect to ◊. In particular, it can be postulated in one of the following forms:

F1(◊) = ”1◊ + ”2 ≠ ◊ log ◊ , (1.80)
F1(◊) = ≠”3◊

2
, (1.81)

F1(◊) = ≠◊ log(◊ + 1) . (1.82)

where ”1, ”2, ”3 Ø 0 are constants.
As for the second term in (1.79), it represents a potential associated with the phase
separation process. Indeed, it is in charge of changes in the qualitative behaviour of
F below a critical temperature ◊c > 0 from a convex into a non-convex double-well
potential in order to assign lower energy values to the pure states, and it determines
the behaviour of F for large value of |u|. A thermodynamically relevant potential
F2 is the logarithmic one given by (1.4), i.e.,

F2(u, ◊) = ≠◊cu
2 + ◊ [(1 ≠ u) log(1 ≠ u) + (1 + u) log(1 + u)] , u œ (≠1, 1) .
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1.2. Non-isothermal Cahn-Hilliard models

Many polynomial potentials F2 for u œ (≠Œ, +Œ) have been considered in the
literature. Such forms arise by expanding the logarithmic free energy density in u

at the mean value um for ◊ near the critical temperature ◊c. However, for various
solid solutions, for instance, metallic alloys, fourth or sixth order polynomials in u,
such as

F2(u, ◊) = “1(◊ ≠ ◊c)u2 + “2u
4 + “3u

6
, (1.83)

where “1 > 0, “2, “3 Ø 0, “2 + “3 > 0, are phenomenologically justified choices for
F2 (see [47,48,51]).

According to the above considerations, we present some possible expressions
for F . In our setting, a possible choice for the homogeneous part F is then the
logarithmic one

Flog(u, ◊) = ≠cV

2 ◊
2 ≠ ◊cu

2 + ◊ [(1 ≠ u) log(1 ≠ u) + (1 + u) log(1 + u)] , (1.84)

or the the polynomial one

Fpol(u, ◊) = ≠cV

2 ◊
2 + (◊ ≠ ◊c)u2 + u

4
, (1.85)

where cV , ◊c > 0. Observe that for such choices of F there is a change of the
qualitative behaviour for ◊ crossing the critical temperature ◊c, i.e., for ◊ > ◊c both
Flog and Fpol are convex in u, while for ◊ < ◊c they turn out to be non-convex (see
Figures 1.3 and 1.4).

u

Flog(u, ◊1)

u

Flog(u, ◊2)

Figure 1.3: convex Flog for ◊1 > ◊c and non-convex double-well Flog for ◊2 < ◊c.

u

Fpol(u, ◊1)

u

Fpol(u, ◊2)

Figure 1.4: convex Fpol for ◊1 > ◊c and non-convex double-well Fpol for ◊2 < ◊c.
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We observe that the coupling term “1◊u
2 in (1.83) is related to the latent heat

of the phase transition. Indeed, the latent heat is given by the di�erence in energy
at fixed temperature between two pure phases (represented by the two local minima
of the homogeneous part F ), i.e.,

⁄(u1, u2) © ◊(s(u1) ≠ s(u2)) .

Hence, for (1.83), recalling that s = ≠ˆ◊Â, we obtain

⁄(u1, u2) = ≠“1◊u
2
1 + “1◊u

2
2 = 0 ,

which means that no latent heat is involved in the process. However, in several
concrete physical situations of phase transitions (see [53] for more details), the
latent heat is not null. Hence, a more general term of the form “1◊(⁄2u

2 ≠⁄1u+⁄0),
⁄2, ⁄1, ⁄0 Ø 0 can be considered. Indeed, in this case, for u1, u2 local minima of F

at fixed ◊ < ◊c,

⁄(u1, u2) = ≠“1⁄2◊u
2
1 + “1⁄1◊u1 + “1⁄2◊u

2
2 ≠ “1⁄1◊u2 ”= 0 .

At last, notice that some articles have been devoted to the case where ⁄2 © 0,
so that the coupling term is linear in u, i.e. “1◊(≠⁄1u + ⁄0), ⁄1, ⁄0 Ø 0 (see for
example [18]). The reason is that, from the mathematical point of view, assuming
such a linear coupling term, thus linear latent heat, seems preferable as one looks
for the well-posedness of the model. In the following, we will show how the sys-
tem of equations (1.74)-(1.77) changes and becomes more complicated to study by
assuming a quadratic coupling term instead of a linear one.

Non-isothermal Cahn-Hilliard models for a specific choice of the Ginzburg-

Landau free energy

We already observed that Miranville and Schimperna’s model can be considered as
an extension of Alt and Paw�low’s one to systems which are far from equilibrium
and to anisotropic materials. Furthermore, we noted that the main di�erence be-
tween Miranville and Schimperna’s system of equations (1.74)-(1.77) and Alt and
Paw�low’s one (1.42)-(1.45) is given by the presence of the term ≠ˆu

ˆt
ˆÒuÂ in (1.75).

We now compute them for two specific choices for the Ginzburg-Landau free energy
density Â.

Firstly, let us assume the homogeneous part F of the Ginzburg-Landau free
energy density (1.78) to be polynomial as in (1.85); i.e.,

Â(u, Òu, ◊) = –

2 |Òu|2 ≠ cV

2 ◊
2 + ⁄(◊ ≠ ◊c)u2 + u

4
,

where –, ⁄, ◊c > 0 , which can be rewritten as

Â(u, Òu, ◊) = –

2 |Òu|2 ≠ Q(◊) + ⁄◊u
2 + F (u), (1.86)
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1.2. Non-isothermal Cahn-Hilliard models

where Q(◊) = cV
2 ◊

2, F (u) = u
4 ≠ ⁄◊cu

2. For such a choice of the free energy Alt
and Paw�low’s system of equations (1.42)-(1.45) reduce to

ˆu

ˆt
= div

1
l11Òµ

◊
≠ l12Ò1

◊

2
, (1.87)

ˆe

ˆt
+ div

1
l22Ò1

◊
≠ l21Òµ

◊

2
= r , (1.88)

µ

◊
= ≠ div

1
–Òu

◊

2
+ 2⁄u + f(u)

◊
, (1.89)

e = –

2 |Òu|2 + Q(◊) + F (u) , (1.90)

in �◊ (0, T ), where f is the derivative of F , i.e. f(u) = 4u
3 ≠⁄◊cu, and the matrix

(li,j)i,j=1,2 = (li,j(u,
µ

◊
,

1
◊
))i,j=1,2 is positive definite with positive diagonal elements.

On the other hand, using (1.86), Miranville and Schimperna’s system of equations
(1.74)-(1.77) become

ˆu

ˆt
= div

1
AÒµ

◊
+ BÒ1

◊

2
, (1.91)

ˆe

ˆt
+ div

1
CÒµ

◊
+ DÒ1

◊
≠ –

ˆu

ˆt
Òu

2
= r, (1.92)

µ = ≠–�u + 2⁄◊u + f(u), (1.93)

e = –

2 |Òu|2 + Q(◊) + F (u), (1.94)

in �◊(0, T ), where the matrices A, B, C, D depend on the variables (u, Òu,
µ

◊
, Òµ

◊
,

1
◊
, Ò1

◊
) and, in order to satisfy (1.66), A, D are, in some sense, positive semi-definite.

Observe that the explicit expressions for the internal energy density (1.90) and
(1.94) coincide. As for the expression for the chemical potential, Alt and Paw�low’s
system of equations and Miranville and Schimperna’s one di�er (see (1.89) and
(1.93)). Indeed, as already observed, Alt and Paw�low’s chemical potential is a pri-
ori assumed as constitutive equation, whereas Miranville and Schimperna’s one is a
posteriori deduced from the two fundamental laws of Thermodynamics. Regarding
the di�erential equations, note that the coe�cients li,j , i, j = 1, 2, in (1.87)-(1.88)
are replaced in (1.91)-(1.92) by matrices A, B, C, D, which satisfy equivalent prop-
erties extended to matrices. Furthermore, as already stated, the main di�erence
between (1.88) and (1.92) is the presence of the term ≠–

ˆu

ˆt
Òu in (1.92), which

plays a crucial role in rewriting the system (1.91)-(1.94) in an equivalent form, as
we see in the following. Indeed, once given (1.94), computing ˆe

ˆt
, we obtain

ˆe

ˆt
= –Òu · ˆÒu

ˆt
+ ˆQ(◊)

ˆt
+ f(u)ˆu

ˆt
,

and, inserting it into (1.92), it yields

–Òu · ˆÒu

ˆt
+ ˆQ(◊)

ˆt
+ f(u)ˆu

ˆt
+ div

1
CÒµ

◊
+ DÒ1

◊

2
≠ –

ˆÒu

ˆt
· Òu ≠ –

ˆu

ˆt
�u = r ,

whence
ˆQ(◊)

ˆt
+ f(u)ˆu

ˆt
+ div

1
CÒµ

◊
+ DÒ1

◊

2
≠ –

ˆu

ˆt
�u = r .
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Finally, using (1.93), we obtain

ˆQ(◊)
ˆt

+ ˆu

ˆt
(µ ≠ 2⁄◊u) + div

1
CÒµ

◊
+ DÒ1

◊

2
= r .

Hence, system of equations (1.91)-(1.94) is equivalent to the following

ˆu

ˆt
= div

1
AÒµ

◊
+ BÒ1

◊

2
, (1.95)

µ = ≠–�u + 2⁄◊u + f(u) , (1.96)

ˆQ(◊)
ˆt

+ ˆu

ˆt
(µ ≠ 2⁄◊u) + div

1
CÒµ

◊
+ DÒ1

◊

2
= r , (1.97)

in � ◊ (0, T ). The mathematical analysis of models of the form (1.87)-(1.90) (or
more generally of (1.42)-(1.45)) can be found, e.g., in [2] and [62]. The mathemat-
ical analysis of (1.91)-(1.94), or equivalently of (1.95)-(1.96) (or more generally of
(1.74)-(1.77)), seems however much more involved. To illustrate this, let us con-
sider for instance the case where A = D = I (the identity matrix), B = C = 0 and
r = 0. The system of equations (1.95)-(1.96) reduce to

ˆu

ˆt
= �µ

◊
, (1.98)

µ = ≠–�u + 2⁄◊u + f(u) , (1.99)

ˆQ(◊)
ˆt

+ ˆu

ˆt
(µ ≠ 2⁄◊u) + �1

◊
= 0 , (1.100)

hence setting ‰ = µ

◊
and inserting (1.98) into (1.100), we obtain

ˆu

ˆt
= �‰ , (1.101)

‰◊ = ≠–�u + 2⁄◊u + f(u) , (1.102)

ˆQ(◊)
ˆt

+ ◊�‰(‰ ≠ 2⁄u) + �1
◊

= 0 , (1.103)

in � ◊ (0, T ). Here, the problem is that we do not know how to treat the term
◊�‰(‰ ≠ 2⁄u). However, we note that the conservations of mass and energy and
the balance of entropy follow. Indeed, once assumed proper Neumann boundary
conditions, integrating (formally) (1.101) over the domain � occupied by the ma-
terial, we obtain the conservation of the spatial average of the order parameter;
i.e.,

Èu(t)Í = Èu(0)Í = um , ’t œ [0, T ] . (1.104)

Multiplying (1.101) by ‰◊ and (1.102) by ˆu

ˆt
, integrating (formally) over �, then

taking the di�erence, it yields

d

dt

⁄

�

Ë
–

2 |Òu|2 + F (u)
È
dx ≠

⁄

�
⁄

ˆu

ˆt
◊u dx ≠

⁄

�
‰◊ �‰ = 0 . (1.105)
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1.2. Non-isothermal Cahn-Hilliard models

Integrating (1.103) over � and summing it to (1.105), using (1.101), we obtain the
conservation of energy

d

dt

⁄

�
e dx = d

dt

⁄

�

Ë
–

2 |Òu|2 + F (u) + Q(◊)
È
dx = 0 . (1.106)

Multiplying (1.103) by 1
◊

and using the chain rule, we reduce to

ˆ�(◊)
ˆt

+ �‰
2

2 ≠ 2⁄�‰u + �1
◊

= |Ò‰|2 + k(◊)
---Ò

1
◊

---
2
,

where �(◊) = cV ◊, whence, using (1.101) and integrating (formally) it over �, the
balance of entropy follows

d

dt

⁄

�
(�(◊) ≠ ⁄u

2) dx =
⁄

�
|Ò‰|2 dx +

⁄

�
k(◊)

---Ò
1
◊

---
2

dx . (1.107)

As already observed, several articles have been devoted to the case where the
general coupling term “1◊(⁄2u

2 ≠⁄1u+⁄0) is assumed to be linear in u, i.e. ⁄2 © 0.
The reason is that, from the mathematical point of view, assuming such a linear
coupling term seems preferable as one looks for the well-posedness of the model.
For instance, let us assume a Ginzburg-Landau free energy density (1.78) in the
following form

Â(u, Òu, ◊) = –

2 |Òu|2 ≠ Q(◊) ≠ ⁄◊u + F (u) , (1.108)

where –, ⁄ > 0, Q(◊) = cV
2 ◊

2
, cV > 0, and F is possibly a non-convex double-well

polynomial potential. For such a choice of the free energy Alt and Paw�low’s system
of equations (1.42)-(1.45) reduce to

ˆu

ˆt
= div

1
l11Òµ

◊
≠ l12Ò1

◊

2
, (1.109)

ˆe

ˆt
+ div

1
l22Ò1

◊
≠ l21Òµ

◊

2
= r , (1.110)

µ

◊
= ≠ div

1
–Òu

◊

2
≠ ⁄ + f(u)

◊
, (1.111)

e = –

2 |Òu|2 + Q(◊) + F (u) , (1.112)

in � ◊ (0, T ), where the matrix (li,j)i,j=1,2 = (li,j(u,
µ

◊
,

1
◊
))i,j=1,2 is positive definite

with positive diagonal elements, while f is the derivative of F . On the other hand,
using (1.108), (1.74)-(1.77) become

ˆu

ˆt
= div

1
AÒµ

◊
+ BÒ1

◊

2
, (1.113)

ˆe

ˆt
+ div

1
CÒµ

◊
+ DÒ1

◊
≠ –

ˆu

ˆt
Òu

2
= r, (1.114)
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µ = ≠–�u ≠ ⁄◊ + f(u), (1.115)

e = –

2 |Òu|2 + Q(◊) + F (u), (1.116)

in � ◊ (0, T ), where the matrices A, B, C, D depend on the variables (u, Òu,
µ

◊
,

Òµ

◊
,

1
◊
, Ò1

◊
) and, in order to satisfy (1.66), A, D are, in some sense, positive semi-

definite.
As already noticed, the explicit expressions for the internal energy density (1.112)
and (1.116) coincide. On the contrary, for the expression for the chemical poten-
tial, Alt and Paw�low’s system of equations and Miranville and Schimperna’s one
di�er (see (1.111) and (1.115)). Furthermore, as already stated, the main di�er-
ence between (1.110) and (1.114) is the presence of the term ≠–

ˆu

ˆt
Òu in (1.114),

which plays a crucial role in rewriting the system (1.113)-(1.116) in an equivalent
form. Proceeding as done in order to deduce (1.95)-(1.96), we can conclude that
the system of equations (1.113)-(1.116) is equivalent to the following

ˆu

ˆt
= div

1
AÒµ

◊
+ BÒ1

◊

2
, (1.117)

µ = ≠–�u ≠ ⁄◊ + f(u) , (1.118)

ˆQ(◊)
ˆt

+ ˆu

ˆt
(µ + ⁄◊) + div

1
CÒµ

◊
+ DÒ1

◊

2
= r , (1.119)

in � ◊ (0, T ). The mathematical analysis of models of the form (1.109)-(1.112)
(or more generally of (1.42)-(1.45)) can still be found in [2] and [62]. As for that
of (1.113)-(1.116), or equivalently (1.117)-(1.118), it seems to be more involved.
However, let us assume r = 0, B = C = 0, A = mI, m > 0, D = k(◊)I, where k

is a suitable function of ◊ and I is the identity matrix. The system of equations
(1.117)-(1.118) then reduce to

ˆu

ˆt
= m�µ

◊
, (1.120)

µ = ≠–�u ≠ ⁄◊ + f(u) , (1.121)

ˆQ(◊)
ˆt

+ ˆu

ˆt
(µ + ⁄◊) + div

1
k(◊)Ò1

◊

2
= 0 , (1.122)

in � ◊ (0, T ). Setting ‰ = µ

◊
and inserting (1.120) into (1.122), we obtain

ˆu

ˆt
= m�‰ , (1.123)

‰◊ = ≠–�u ≠ ⁄◊ + f(u) , (1.124)

ˆQ(◊)
ˆt

+ m◊�‰(‰ + ⁄) + div
1
k(◊)Ò1

◊

2
= 0 , (1.125)

in � ◊ (0, T ). Recalling that the mass and the heat fluxes are given by (1.67) and
(1.68), we deduce

j = ≠mÒ‰, q = m◊‰Ò‰ + k(◊)Ò1
◊

.
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1.2. Non-isothermal Cahn-Hilliard models

Observe that k is related to the heat conductivity and that, in order to recover
Fourier’s law, we should assume

k(◊) = k2◊
2
, k2 > 0 . (1.126)

However, several papers have been devoted to the case where

k(◊) © k0 , (1.127)

where k0 is a positive constant (see e.g. [34,36,65]), or more generally

k(◊) = k1◊
”
, ” œ [0, 1) , (1.128)

where k1 is a positive constant (see e.g. [37]) Indeed, the law (1.127) (also (1.128))
turns out to be satisfactory for low and intermediate temperatures and o�ers some
advantages from the mathematical point of view, but it does not look acceptable
for high temperatures because it does not provide any coerciveness as ◊ becomes
larger and larger. These considerations suggest to combine (1.127) with (1.126),
obtaining

k(◊) = k0 + k2◊
2

, k0, k2 > 0 . (1.129)

The meaning of the above expression is that of describing a di�usion law which is
singular as the temperature ◊ approaches zero, while it has approximately a linear
structure for large values of ◊, as in the classical Fourier relation. Concerning this
case, more generally, in [14,27], k is assumed in the following form

k(◊) = Ÿ
Õ(◊)◊2

, (1.130)

where Ÿ
Õ is the derivative of a function Ÿ which satisfies the following properties:

Ÿ(1) = 0 , Ÿ is strictly increasing and such that Ÿ(◊) √ ≠Œ as ◊ √ 0 , Ÿ(◊) ¬ +Œ
as ◊ ¬ +Œ.
Concerning the system of equations (1.123)-(1.124), in the following chapter we
will be able to conclude about the existence of the so-called entropy solutions (see
Def. 2.2.1) assuming

k(◊) = k0 + k1◊
—
, — œ [0, 2) , (1.131)

where k0, k1 > 0, and also about that of weak solutions (see Def. 2.2.2) for — œ
(5

3 , 2).
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Chapter 2
Entropy and weak solutions to a

non-isothermal Cahn-Hilliard model

The aim of this chapter is to prove the existence of the so-called entropy solutions
to the non-isothermal Cahn-Hilliard model given by equations (1.123)-(1.124). Fur-
thermore, in a subcase, we will also be able to conclude about the existence of weak
solutions. Once suitable assumptions are made, we will prove some formal a pri-
ori estimates holding for hypothetical solutions to the strong formulation of the
model, or more precisely, to a proper regularization or approximation of it. Then,
we will show by compactness arguments that at least a subsequence converges in
a suitable way to an entropy solution and, in a subcase, also to a weak solution
to our problem. At last, we will propose a possible approximation of the “strong”
system that one could try to develop.

2.1 Setting of the problem

Let � be the domain occupied by the material, which we assume to be a bounded,
open subset of R3 with a smooth boundary ˆ�, and let T > 0 be a given final time,
which may be arbitrarily large. Then, let (x, t) be an arbitrary point belonging
to � ◊ (0, T ). Let us denote by Ò and by � the spatial gradient and Laplacian,
respectively. Moreover, for j œ N, let D

j stand for the j
th spatial derivative. As for

the time variable, from now on, we will denote by ( · )t the partial derivative with
respect to t.

Consider the strong formulation of the non-isothermal Cahn-Hilliard model
given by the system equations (1.123)-(1.124), which reads

ut = m�‰ , (2.1)

‰◊ = ≠–�u ≠ ⁄◊ + f(u) , (2.2)

(Q(◊))t + m◊�‰(‰ + ⁄) + div
1
k(◊)Ò1

◊

2
= 0 , (2.3)

31



in � ◊ (0, T ). Here, u, ◊ : � ◊ (0, T ) æ R represent the so-called order parameter
and the (absolute) temperature of the system, while ‰ : � ◊ (0, T ) æ R is an
auxiliary variable defined through equation (2.2) which helps particularly for the
statement of the weak formulation of the model (see Def.2.2.1). As introduced in
the previous chapter, ‰ stands for the rescaled chemical potential µ

◊
. m, – and ⁄

are positive constants related to the mobility, the thickness of the interface and the
latent heat, respectively. Moreover, f : R æ R is the derivative of F : R æ R, a
non-convex double-well polynomial potential, while k : R+ æ R+, as a function of
◊, is related to the heat conductivity. The expressions for F and k will be specified
in Section 2.2. Lastly, let Q : R+ æ R+ be defined as Q(◊) = cV

2 ◊
2
, where cV > 0.

Boundary and initial conditions

In order to get a well-posed problem, we have to specify suitable initial and bound-
ary conditions. Consistently with the physical derivation presented in the previous
chapter, we will essentially assume that the system is insulated from the exterior.
This leads to taking the following no mass flux (through the boundary) condition:

Ò‰ · ‹ = 0 on ˆ� , (2.4)

where ‹ denotes the unit outer normal to the boundary ˆ�. As already observed
in Subsection 1.1.1, thanks to (2.4), integrating (2.1) in space and time, we obtain
the mass conservation:

Èu(t)Í © 1
Vol(�)

⁄

�
u(x, t)dx = Èu(0)Í, ’t œ [0, T ] , (2.5)

which is a characteristic feature of Cahn-Hilliard-type models. Next, we assume
that

Òu · ‹ = 0 on ˆ� . (2.6)

This condition prescribes that the di�use interface is orthogonal to the boundary
of the domain. Moreover, we take no-flux boundary conditions for the temperature:

k(◊)Ò1
◊

· ‹ = 0 on ˆ� . (2.7)

Finally, the system is complemented by the initial conditions

u(·, 0) = u0 , ◊(·, 0) = ◊0 .

Balance laws

We already observed that the boundary condition (2.4) leads to the conservation
of mass (2.5). Another conservation law follows from the system of equations (2.1)-
(2.3) endowed with the Neumann boundary conditions (2.4)-(2.7): the conservation
of internal energy.
Multiplying (2.1) by ‰◊ and (2.2) by ut, then taking the di�erence, we obtain

Ë
–

2 |Òu|2 + F (u)
È

t

≠ ⁄ut◊ ≠ m‰◊�‰ = 0 . (2.8)
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2.1. Setting of the problem

Summing (2.3) to (2.8), then using (2.1), the balance of internal energy equation
follows Ë

–

2 |Òu|2 + Q(◊) + F (u)
È

t

+ div
1
k(◊)Ò1

◊

2
= 0 . (2.9)

Indeed, as provided by the original formulation of the problem (1.113)-(1.116), the
internal energy density is given by

e = –

2 |Òu|2 + Q(◊) + F (u) .

Hence, integrating (2.9) over � and using the boundary condition (2.7), we recover
the conservation of energy

d

dt

⁄

�
e dx = d

dt

⁄

�

Ë1
2 |Òu|2 + F (u) + Q(◊)

È
dx = 0 . (2.10)

A key point in the statement of the entropy formulation of our model (see Def.
2.2.1) consists in replacing the “heat” equation (2.3) with the balance of entropy.
This relation is, indeed, mathematically more tractable, but it keeps all the main
features of the problem.
Multiplying (2.3) by 1

◊
and using the chain rule, we obtain an equivalent formulation

of it, which is given by

(�(◊))t + m�
1

‰
2

2 + ⁄‰

2
+ div

1
k(◊)

◊
Ò1

◊

2
= m|Ò‰|2 + k(◊)

---Ò
1
◊

---
2
, (2.11)

where �(◊) = cV ◊, whence, using (2.1), we deduce the balance of entropy equation

(�(◊) + ⁄u)t + m�
1

‰
2

2
2

+ div
1

k(◊)
◊

Ò1
◊

2
= m|Ò‰|2 + k(◊)

---Ò
1
◊

---
2
. (2.12)

Indeed, being the Helmholtz free energy Â given by (1.108), the entropy density is
then s = ≠ˆ◊Â = �(◊) + ⁄u. Integrating (2.12) over � and using the boundary
conditions (2.4) and (2.7), the integral form of the balance of entropy follows

d

dt

⁄

�
(�(◊) + ⁄u) dx =

⁄

�
m|Ò‰|2 dx +

⁄

�
k(◊)

---Ò
1
◊

---
2

dx . (2.13)

Remark 2.1.1. It is worth noting that (2.11), or equivalently (2.12), is an equality
at this level, but it will turn to an inequality in the framework of the rigorous
definition of entropy solution that will be introduced later on (see Def. 2.2.1). Of
course, this phenomenon is due to the quadratic terms on the right hand side,
which do not behave well with respect to weak limits. However, in case we could
prove that there exists a smooth solution to the entropy formulation of the model,
then for that solution it would be possible to recover the entropy equality (2.11).
Furthermore, (2.11) is equivalent to (2.3) in that setting. In this sense, the entropy
formulation presented in the next section turns out to be compatible with the strong
formulation (2.1)-(2.3) given at the beginning, at least when su�cient regularity
holds.
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2.2 Main results

Before presenting the main results of the thesis in the form of rigorous statements,
we list the hypotheses imposed on the constitutive functions and we present the
entropy formulation and the weak formulation of the problem.

Assumptions on coe�cients and data

First of all, just for the sake of simplicity, we assume m = 1 and – = 1. However,
all the following results will hold also for general constants –, m > 0. Next, we
consider a polynomial double-well potential F , whose expression is given by

F (u) = a1|u|fl ≠ a2u
2
, fl œ

#
3,

7
2
$
, (2.14)

where a1, a2 > 0 , so that its derivative reads

f(u) = a1fl sgn(u)|u|fl≠1 ≠ 2a2u , (2.15)

where sgn represents the sign function. The condition fl œ
#
3,

7
2
$

will be needed to
derive a priori estimates in the next section (cf. for instance (2.42) and (2.44)).
As for the function k related to the heat conductivity, we assume it in the following
form

k(◊) = k0 + k1◊
—
, (2.16)

where k0, k1 > 0 and — œ [0, 2). The latter condition will be needed to derive a
priori estimates in the next section (cf. for instance (2.48), (2.49) and (2.50)).
We conclude by specifying our hypotheses on the initial data:

u0 œ H
1(�) , ◊0 > 0 almost everywhere in � ,

◊0 œ L
2(�) ,

1
◊0

œ L
1(�) and f(u0) ≠ �u0

◊

1
2
0

œ L
2(�) . (2.17)

Notice that the regularities provided by (2.17) are satisfied for instance when

u0 œ H
2(�), ◊0 œ L

2(�), ◊0 Ø ◊̄ > 0 almost everywhere in � ,

where ◊̄ > 0 is a given constant.

Entropy and weak formulations

Firstly, we introduce the notion of entropy solution to our problem:

Definition 2.2.1. An entropy solution to the non-isothermal Cahn-Hilliard model
is a triple (u, ‰, ◊) of su�cient regularity satisfying equations

ut = �‰ in L
2(�), almost everywhere in (0, T ) , (2.18)

‰◊ = f(u) ≠ ⁄◊ ≠ �u in L
2(�), almost everywhere in (0, T ) , (2.19)
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2.2. Main results

with the boundary conditions (2.4)-(2.6), the initial condition u(·, 0) = u0, and the
entropy production inequality:

⁄
T

0

⁄

�
�(◊)’t dxdt +

⁄
T

0

⁄

�
Ò

1
‰

2

2 + ⁄‰

2
· Ò’ dxdt +

⁄
T

0

⁄

�

k(◊)
◊

Ò1
◊

· Ò’ dxdt

Æ ≠
⁄

T

0

⁄

�
|Ò‰|2’ dxdt ≠

⁄
T

0

⁄

�
k(◊)

---Ò
1
◊

---
2
’ dxdt ≠

⁄

�
�(◊0)’(·, 0) dx ,

’’ œ CŒ(�̄ ◊ [0, T ]) such that ’ Ø 0, ’(·, T ) = 0 . (2.20)

It is worth noting that (2.20) incorporates both the initial condition ◊(·, 0) = ◊0
and the no-flux condition (2.7). As for the boundary conditions (2.4)-(2.6), they
will be recovered in the sense of traces.

Another notion of solution to our problem can be introduced, that of weak
solution. Notice that this notion is somehow “stronger” than the previous one.

Definition 2.2.2. A weak solution to the non-isothermal Cahn-Hilliard model is
a triple (u, ‰, ◊) of su�cient regularity satisfying equations (2.18)-(2.19) with the
boundary conditions (2.4)-(2.6), the initial condition u(·, 0) = u0, and the weak
form of the “heat” equation:

⁄
T

0

⁄

�
Q(◊)›t dx +

⁄

�
Q(◊0)›(·, 0) dx ≠

⁄

�
Q(◊(·, T ))›(·, T ) dx +

≠
⁄

T

0

⁄

�
◊(‰ + ⁄)�‰› dxdt +

⁄
T

0

⁄

�
k(◊)Ò1

◊
· Ò› dxdt = 0 ,

’› œ CŒ(�̄ ◊ [0, T ]) . (2.21)

Also in this case, (2.21) incorporates both the initial condition ◊(·, 0) = ◊0 and
the boundary condition (2.7), whereas (2.4)-(2.6) will be recovered in the sense of
traces.

Main existence theorems

Our main results can now be stated as follows:

Theorem 2.2.1 (Existence of entropy solutions). Under the assumptions stated
above, for — œ [0, 2) in (2.16), the non-isothermal Cahn-Hilliard model admits
at least one entropy solution, in the sense of Definition 2.2.1, in the following
regularity class:

u œ L
Œ(0, T ; W

2,
4
3 (�)) fl L

3(0, T ; H
2(�)) fl H

1(0, T ; L
2(�)) ,

‰ œ L
2(0, T ; H

2(�)) , ‰
2 œ L

2(0, T ; H
1(�)) ,

◊ œ L
Œ(0, T ; L

2(�)) , ◊ > 0 almost everywhere in � ◊ (0, T ) ,

log ◊ œ L
2(0, T ; L

2(�)), 1
◊

œ L
2(0, T ; H

1(�)) ,

1
◊2 œ L

2(0, T ; H
1(�)) ,

1
◊2≠—

œ L
2(0, T ; H

1(�)) . (2.22)
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Theorem 2.2.2 (Existence of weak solutions). Under the assumptions stated
above, for — œ (5

3 , 2) in (2.16), the non-isothermal Cahn-Hilliard model admits at
least one weak solution, in the sense of Definition 2.2.2, in the following regularity
class:

u œ L
Œ(0, T ; W

2,
4
3 (�)) fl L

3(0, T ; H
2(�)) fl H

1(0, T ; L
2(�)) ,

‰ œ L
2(0, T ; H

2(�)) , ‰
2 œ L

2(0, T ; H
1(�)) ,

◊ œ L
Œ(0, T ; L

2(�)) fl L
q(� ◊ (0, T )) , ’q œ [1,

3—+1
3 ),

◊ > 0 almost everywhere in � ◊ (0, T ) ,

log ◊ œ L
2(0, T ; L

2(�)), 1
◊

œ L
2(0, T ; H

1(�)) ,

1
◊2 œ L

2(0, T ; H
1(�)) ,

1
◊2≠—

œ L
2(0, T ; H

1(�)) . (2.23)

Remark 2.2.3. Notice that in case we could prove the existence of a su�ciently
smooth weak solution (in particular, regular enough in order to integrate back by
parts the terms in (2.21)), then it would be possible to show that such a solution
also satisfies the “standard” form of the “heat” equation (2.3). Hence, the current
notion of weak solution turns out to be compatible with the strong one. On the
other hand, in case we could prove the existence of a su�ciently smooth entropy
solution (in particular, regular enough in order to integrate back by parts the terms
in (2.20)), then the entropy inequality (2.20) would hold as an equality and it would
be possible to show that such a solution satisfies (2.11), hence also (2.3) because they
are equivalent. Thus, we can conclude that the current notion of entropy solution
turns out to be compatible both with the weak and the strong one.

2.3 A priori estimates

In this section, we will prove some formal a priori estimates holding for a hypothet-
ical triple (u, ‰, ◊) solving the “strong” formulation of the model, i.e., the system of
equations (2.1)-(2.3). Actually, these estimates will follow as direct consequences of
the conservation of mass (2.5), the conservation of energy (2.10) and the balance
of entropy (2.13), but mainly as results of some technical work (see Subsection
2.3.2). Of course, to make this procedure fully rigorous, one should rather consider
a proper regularization or approximation of the “strong” system and prove that it
admits at least one solution being su�ciently smooth in order to comply with the
estimates. However, the system of equations (2.1)-(2.3) is rather complex and, as a
consequence, the related approximation would be particularly long and technical.
For all these reasons, we decided to skip this argument and rather proceed formally.

Throughout the section, we will assume the reader to be familiar with the no-
tions and the results presented in Appendix A.2-A.8. However, sometimes we will
explicitly recall them in order to emphasize their use.

From now on, in order to simplify the notation, we will denote by L
p(�), instead

of L
p(�; R3), the space of R3-valued functions whose components belong to L

p(�).
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2.3. A priori estimates

È · , · ÍXÕ,X will stand for the duality between two Banach spaces X and X
Õ, where

X
Õ is the dual space of X.

Furthermore, the same letter c (and, sometimes, cfl, c‘ or cp when accounting for
the dependence on a parameter fl, ‘ or p) denotes positive constants which may
vary from line to line.

2.3.1 Energy and entropy estimates

From the integration with respect to time of the conservation of energy (2.10),
using (2.17), we deduce

Î◊ÎLŒ(0, T ; L2(�)) Æ c , (2.24)
ÎÒuÎLŒ(0, T ; L2(�)) Æ c , (2.25)
ÎF (u)ÎLŒ(0, T ; L1(�)) Æ c . (2.26)

Using the Poincaré-Wirtinger inequality, from (2.5) and (2.25) it follows that

ÎuÎLŒ(0, T ; H1(�)) Æ c . (2.27)

Using the continuous embedding H
1(�) Òæ L

6(�), we then obtain

ÎuÎLŒ(0, T ; L6(�)) Æ c . (2.28)

Since f is given by (2.15), we can conclude that

Îf(u)Î
LŒ(0, T ; L

6
fl≠1 (�))

Æ c , (2.29)

where 6
fl≠1 œ [12

5 , 3] for fl œ [3,
7
2 ] .

Integrating the balance of entropy (2.13) with respect to time and using (2.24),
(2.27) to control the left hand side, we deduce

ÎÒ‰ÎL2(0, T ; L2(�)) Æ c , (2.30)
⁄

T

0

⁄

�
k(◊)

---Ò
1
◊

---
2

dxdt Æ c . (2.31)

Since k is given by (2.16), from (2.31) it follows that
...Ò1

◊

...
L2(0, T ; L2(�))

Æ c (2.32)

and
⁄

T

0

⁄

�
◊

—≠4|Ò◊|2 dx dt =
⁄

T

0

⁄

�
|◊

—
2 ≠2Ò◊|2 dx dt =

=
⁄

T

0

⁄

�
(—

2 ≠ 1)≠2|Ò◊
—
2 ≠1|2 dx dt Æ c ,

namely,
ÎÒ◊

—
2 ≠1ÎL2(0, T ; L2(�)) Æ c . (2.33)
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2.3.2 Further a priori estimates

Key estimates

First test function for the entropy equation. Firstly, we multiply (2.11) by
≠

!
‰

2

2 + ⁄‰
"

and we integrate it over �, obtaining

≠
⁄

�
cV ◊t

1
‰

2

2 + ⁄‰

2
+

⁄

�

1
Ò

1
‰

2

2 + ⁄‰

2
+ k(◊)

◊
Ò1

◊

2
· Ò

1
‰

2

2 + ⁄‰

2
dx +

+
⁄

�
|Ò‰|2

1
‰

2

2 + ⁄‰

2
dx +

⁄

�
k(◊)

---Ò
1
◊

---
21

‰
2

2 + ⁄‰

2
dx = 0 . (2.34)

Taking the partial derivative of (2.2) with respect to time,

‰t◊ + ‰◊t + ⁄◊t = ≠�ut + f
Õ(u)ut ,

then multiplying it by ‰, we get
1

‰
2

2
2

t

◊ + ‰
2
◊t + ⁄‰◊t = ≠‰�ut + f

Õ(u)ut‰ . (2.35)

On the other hand, multiplying (2.1) by ut and integrating over �, thanks to (2.4),
we have

ÎutÎ2
L2(�) = ≠(Òut, Ò‰)L2(�), L2(�) . (2.36)

Integrating (2.35) over � and combining it with (2.36), it yields

d

dt

⁄

�

‰
2

2 ◊ dx ≠
⁄

�

‰
2

2 ◊t dx +
⁄

�
‰

2
◊t dx+

+
⁄

�
⁄‰◊t dx + ÎutÎ2

L2(�) =
⁄

�
f

Õ(u)ut‰ dx . (2.37)

Finally, multiplying (2.37) by cV and summing it to (2.34), we obtain

d

dt

⁄

�
cV

‰
2

2 ◊ dx +
⁄

�

1
Ò

1
‰

2

2 + ⁄‰

2
+ k(◊)

◊
Ò1

◊

2
· Ò

1
‰

2

2 + ⁄‰

2
dx +

+ cV ÎutÎ2
L2(�) +

⁄

�
|Ò‰|2

1
‰

2

2 + ⁄‰

2
dx +

⁄

�
k(◊)

---Ò
1
◊

---
21

‰
2

2 + ⁄‰

2
dx

= cV

⁄

�
f

Õ(u)ut‰ dx . (2.38)

Note that b1‰
2 ≠ b2 Æ ‰

2

2 + ⁄‰ for b1 Ø 0, b2 > 0 such that 2b2(1 ≠ 2b1) Ø ⁄. In
particular, ≠⁄

2 Æ ‰
2

2 + ⁄‰. It follows that

d

dt

⁄

�
cV

‰
2

2 ◊ dx +
⁄

�

1
Ò

1
‰

2

2 + ⁄‰

2
+ k(◊)

◊
Ò1

◊

2
· Ò

1
‰

2

2 + ⁄‰

2
dx +

+ cV ÎutÎ2
L2(�) + b1

⁄

�
‰

2|Ò‰|2 dx Æ b2ÎÒ‰Î2
L2(�) + ⁄

2

⁄

�
k(◊)

---Ò
1
◊

---
2

dx +

+ cV

⁄

�
f

Õ(u)ut‰ dx , (2.39)
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2.3. A priori estimates

for assigned b1, b2 > 0 satisfying 2b2(1 ≠ 2b1) Ø ⁄.
We now control the last term on the right hand side of (2.39). Using (2.1), we can
rewrite it as

cV

⁄

�
f

Õ(u)ut‰ dx = cV

⁄

�
f

Õ(u)‰�‰ dx ,

thus, integrating by parts and using (2.6),

cV

⁄

�
f

Õ(u)ut‰ dx = ≠ cV

⁄

�
f

Õ(u)|Ò‰|2dx ≠ cV

⁄

�
f

ÕÕ(u)‰Òu · Ò‰ dx , (2.40)

where f
Õ and f

ÕÕ denote the first and the second derivative of f , respectively. Since
f is given by (2.15), then

f
Õ(u) = a1fl(fl ≠ 1)|u|fl≠2 ≠ 2a2 , f

ÕÕ(u) = a1fl(fl ≠ 1)(fl ≠ 2) sgn(u)|u|fl≠3
. (2.41)

From (2.40) it then follows that

cV

⁄

�
f

Õ(u)ut‰ dx = ≠ cV

⁄

�
a1fl(fl ≠ 1)|u|fl≠2|Ò‰|2dx + cV

⁄

�
2a2|Ò‰|2dx +

≠ cV

⁄

�
a1fl(fl ≠ 1)(fl ≠ 2) sgn(u)|u|fl≠3

‰Òu · Ò‰ dx . (2.42)

Observe that, inserting (2.42) into (2.39), we can move the first term on the right
hand side of (2.42) to the left hand side of (2.39), hence the only term to control
is the last one of (2.42). Using Hölder’s inequality, we deduce

≠cV

⁄

�
a1fl(fl ≠ 1)(fl ≠ 2) sgn(u)|u|fl≠3

‰Òu · Ò‰ dx Æ cfl

⁄

�
|u|fl≠3|Òu||Ò‰

2| dx

Æ cflÎ|u|fl≠3Î
L

6
fl≠3 (�)

ÎÒuÎ
L

6
6≠fl (�)

ÎÒ‰
2ÎL2(�)

Æ cflÎuÎfl≠3
L6(�)ÎÒuÎ

L

6
6≠fl (�)

ÎÒ‰
2ÎL2(�) .

(2.43)

Using the Gagliardo-Nirenberg interpolation inequality, we obtain

ÎÒuÎ
L

6
6≠fl (�)

Æ c
#
ÎD

2
uÎ

L
4
3 (�)

+ ÎuÎL6(�)
$
,

whence, thanks to classical elliptic regularity results (cf. Appendix A.8),

ÎÒuÎ
L

6
6≠fl (�)

Æ c
#
Î�uÎ

L
4
3 (�)

+ ÎuÎL6(�)
$
, (2.44)

where, according to (2.15), fl œ [3,
7
2 ], hence 6

6≠fl
œ [2,

12
5 ].

From (2.43) and (2.44) it follows

≠ cV

⁄

�
a1fl(fl ≠ 1)(fl ≠ 2) sgn(u)|u|fl≠3

‰Òu · Ò‰ dx

Æ cflÎuÎfl≠3
L6(�)ÎÒ‰

2ÎL2(�)
#
Î�uÎ

L
4
3 (�)

+ ÎuÎL6(�)
$

Æ cflÎÒ‰
2ÎL2(�)

#
Î�uÎ

L
4
3 (�)

+ 1
$

Æ ‡ÎÒ‰
2Î2

L2(�) + c‡cflÎ�uÎ2
L

4
3 (�)

$
, (2.45)
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where in the last line we used (2.28) and then Young’s inequality for ‡ > 0 small
enough to satisfy b1 ≠ 4‡ > 0 for b1 as assigned in (2.39).
Finally, let us control the last term in (2.45). Due to (2.2) and Young’s inequality,

Î�uÎ2
L

4
3 (�)

Æ c
#
Î◊Î2

L
4
3 (�)

+ Îf(u)Î2
L

4
3 (�)

+ Î‰◊Î2
L

4
3 (�)

$
,

whence, using Hölder’s inequality, we deduce

Î�uÎ2
L

4
3 (�)

Æ c
#
Î◊Î2

L
4
3 (�)

+ Îf(u)Î2
L

4
3 (�)

+ Î‰◊
1
2 Î2

L2(�)Î◊
1
2 Î2

L4(�)
$

Æ c
#
Î◊Î2

L
4
3 (�)

+ Îf(u)Î2
L

4
3 (�)

+ Î‰
2
◊ÎL1(�)Î◊ÎL2(�)

$

Æ c
#
1 + Î‰

2
◊ÎL1(�)

$
, (2.46)

where in the last inequality we used (2.24) and (2.29).
Combining together (2.39), (2.42), (2.45) and (2.46), it yields

d

dt

⁄

�
cV

‰
2

2 ◊ dx +
⁄

�

1
Ò

1
‰

2

2 + ⁄‰

2
+ k(◊)

◊
Ò1

◊

2
· Ò

1
‰

2

2 + ⁄‰

2
dx +

+ cV ÎutÎ2
L2(�) + (b1 ≠ 4‡)

...Ò‰
2

2

...
2

L2(�)
+ cV

⁄

�
a1fl(fl ≠ 1)|u|fl≠2|Ò‰|2 dx

Æ (b2 + 2cV a2)ÎÒ‰Î2
L2(�) + ⁄

2

⁄

�
k(◊)

---Ò
1
◊

---
2

dx + c‡cfl

#
1 + Î‰

2
◊ÎL1(�)

$
. (2.47)

Remark 2.3.1. Notice that we assumed fl Ø 3 in (2.15) in order to have positive
exponents in the expressions for f

Õ and f
ÕÕ given by (2.41), hence in (2.42). As

for the hypothesis fl Æ 7
2 , it is needed in order to obtain (2.44) through the ap-

plication of the Gagliardo-Nirenberg interpolation inequality. Otherwise, we would
obtain Î�uÎLp(�) on the right hand side of (2.44), where p >

4
3 for fl >

7
2 . As a

consequence, we would have Î‰
2
◊ÎLr(�) with r > 1 on the right hand side of (2.46).

Thus, we could not proceed as we will do in the following, i.e., applying Gronwall’s
Lemma in order to close the estimates.

Second test function for the entropy equation. Next, we multiply (2.11) by
≠g(◊), where g is a positive function of ◊ such that its gradient is equal to k(◊)

◊
Ò1

◊
.

Recalling that k is given by (2.16), we have

k(◊)
◊

Ò1
◊

=
1

k0
◊

+ k1◊
—≠1

2
Ò1

◊
= Ò k0

2◊2 + Ò k1
(2 ≠ —)◊2≠—

=

= Ò
1

k0
2◊2 + k1

(2 ≠ —)◊2≠—

2
, (2.48)

hence g is given by

g(◊) = k0
2◊2 + k1

(2 ≠ —)◊2≠—
.
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2.3. A priori estimates

If — œ [0, 1) fi (1, 2) , multiplying (2.11) by ≠
!

k0
2◊2 + k1

(2≠—)◊2≠—

"
and integrating over

�, we obtain

d

dt

⁄

�
cV

1
k0
2◊

≠ k1◊
—≠1

(2 ≠ —)(— ≠ 1)
2
dx +

⁄

�
Ò

1
‰

2

2 + ⁄‰

2
·Ò

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2
dx

+
⁄

�

k(◊)
◊

Ò1
◊

· Ò
1

k0
2◊2 + k1

(2 ≠ —)◊2≠—

2
dx +

⁄

�

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2
|Ò‰|2 dx

+
⁄

�
k(◊)

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2---Ò
1
◊

---
2

dx = 0 . (2.49)

Otherwise, if — = 1, multiplying (2.11) by ≠
!

k0
2◊2 + k1

◊

"
and integrating over �, we

get

d

dt

⁄

�
cV

1
k0
2◊

≠ k1 log ◊

2
dx +

⁄

�
Ò

1
‰

2

2 + ⁄‰

2
· Ò

1
k0
2◊2 + k1

◊

2
dx

+
⁄

�

k(◊)
◊

Ò1
◊

· Ò
1

k0
2◊2 + k1

◊

2
dx +

⁄

�

1
k0
2◊2 + k1

◊

2
|Ò‰|2 dx

+
⁄

�
k(◊)

1
k0
2◊2 + k1

◊

2---Ò
1
◊

---
2

dx = 0 . (2.50)

Sum of the first and the second test function for the entropy equation.

Summing (2.47) and (2.49), for — œ [0, 1) fi (1, 2) , we obtain

d

dt

⁄

�
cV

1
‰

2

2 ◊ + k0
2◊

≠ k1◊
—≠1

(2 ≠ —)(— ≠ 1)
2

dx + cV ÎutÎ2
L2(�)

+
⁄

�

1
Ò

1
‰

2

2 + ⁄‰

2
+ k(◊)

◊
Ò1

◊

2
·
1
Ò

1
‰

2

2 + ⁄‰

2
+Ò

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

22
dx

+
⁄

�

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2
|Ò‰|2 dx +

⁄

�
k(◊)

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2---Ò
1
◊

---
2
dx

+ (b1 ≠ 4‡)
...Ò‰

2

2

...
2

L2(�)
+ cV

⁄

�
a1fl(fl ≠ 1)|u|fl≠2|Ò‰|2 dx

Æ (b2 + 2cV a2)ÎÒ‰Î2
L2(�) + ⁄

2

⁄

�
k(◊)

---Ò
1
◊

---
2
dx + c‡cfl

#
1 + Î‰

2
◊ÎL1(�)

$
,

while for — = 1, summing (2.47) and (2.50),

d

dt

⁄

�
cV

1
‰

2

2 ◊ + k0
2◊

≠ k1 log ◊

2
dx + cV ÎutÎ2

L2(�)

+
⁄

�

1
Ò

1
‰

2

2 + ⁄‰

2
+ k(◊)

◊
Ò1

◊

2
·
1
Ò

1
‰

2

2 + ⁄‰

2
+ Ò

1
k0
2◊2 + k1

◊

22
dx

+
⁄

�

1
k0
2◊2 + k1

◊

2
|Ò‰|2 dx +

⁄

�
k(◊)

1
k0
2◊2 + k1

◊

2---Ò
1
◊

---
2

dx

+ (b1 ≠ 4‡)
...Ò‰

2

2

...
2

L2(�)
+ cV

⁄

�
a1fl(fl ≠ 1)|u|fl≠2|Ò‰|2 dx

Æ (b2 + 2cV a2)ÎÒ‰Î2
L2(�) + ⁄

2

⁄

�
k(◊)

---Ò
1
◊

---
2

dx + c‡cfl

#
1 + Î‰

2
◊ÎL1(�)

$
.
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Since (2.48) holds true, for — œ [0, 1) fi (1, 2) , it follows that

d

dt

⁄

�
cV

1
‰

2

2 ◊ + k0
2◊

≠ k1◊
—≠1

(2 ≠ —)(— ≠ 1)
2

dx

+ cV ÎutÎ2
L2(�) +

...Ò
1

‰
2

2 + ⁄‰ + k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
2

L2(�)

+
⁄

�

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2
|Ò‰|2 dx +

⁄

�
k(◊)

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2---Ò
1
◊

---
2
dx

+ (b1 ≠ 4‡)
...Ò‰

2

2

...
2

L2(�)
+ cV

⁄

�
a1fl(fl ≠ 1)|u|fl≠2|Ò‰|2 dx

Æ (b2 + 2cV a2)ÎÒ‰Î2
L2(�) + ⁄

2

⁄

�
k(◊)

---Ò
1
◊

---
2

dx + c‡cfl

#
1 + Î‰

2
◊ÎL1(�)

$
, (2.51)

whereas, if — = 1,

d

dt

⁄

�
cV

1
‰

2

2 ◊ + k0
2◊

≠ k1 log ◊

2
dx + cV ÎutÎ2

L2(�)

+
...Ò

1
‰

2

2 + ⁄‰ + k0
2◊2 + k1

◊

2...
2

L2(�)

+
⁄

�

1
k0
2◊2 + k1

◊

2
|Ò‰|2 dx +

⁄

�
k(◊)

1
k0
2◊2 + k1

◊

2---Ò
1
◊

---
2

dx

+ (b1 ≠ 4‡)
...Ò‰

2

2

...
2

L2(�)
+ cV

⁄

�
a1fl(fl ≠ 1)|u|fl≠2|Ò‰|2 dx

Æ (b2 + 2cV a2)ÎÒ‰Î2
L2(�) + ⁄

2

⁄

�
k(◊)

---Ò
1
◊

---
2

dx + c‡cfl

#
1 + Î‰

2
◊ÎL1(�)

$
. (2.52)

Let us consider the cases — œ [0, 1), — = 1 and — œ (1, 2) separately.

• — œ [0, 1): Integrating (2.51) with respect to time, we obtain
⁄

�
cV

1
‰

2
◊

2 (·) + k0
2◊

(·) + k1
(2 ≠ —)(1 ≠ —)◊1≠—

(·)
2

dx +

+ cV

⁄
·

0
ÎutÎ2

L2(�)dt +
⁄

·

0

...Ò
1

‰
2

2 + ⁄‰ + k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
2

L2(�)
dt +
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⁄

·
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⁄

�

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2
|Ò‰|2 dxdt +

+
⁄

·

0

⁄

�
k(◊)

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2---Ò
1
◊

---
2
dxdt +

+ (b1 ≠ 4‡)
⁄

·

0

...Ò‰
2

2

...
2

L2(�)
dt + cV

⁄
·

0

⁄

�
a1fl(fl ≠ 1)|u|fl≠2|Ò‰|2 dxdt

Æ
⁄

�
cV

1
‰

2
0◊0
2 + k0

2◊0
+ k1

(2 ≠ —)(1 ≠ —)◊1≠—

0

2
dx +

+ (b2 + 2cV a2)ÎÒ‰Î2
L2(0, T ; L2(�)) + ⁄

2

⁄
T

0

⁄

�
k(◊)

---Ò
1
◊

---
2

dxdt +

+ c‡cflT + c‡cfl

⁄
·

0
Î‰

2
◊ÎL1(�)dt , ’· œ [0, T ] . (2.53)
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2.3. A priori estimates

Remark 2.3.2. Recall that the a priori estimates deduced in this section
should be satisfied by su�ciently smooth solutions to a proper regularization or
approximation of the “strong” system (2.1)-(2.2)-(2.3). For this reason, (2.53)
and other estimates in the following are supposed to hold true ’· œ [0, T ],
instead of almost everywhere in (0, T ). However, passing to the limit, thus
recovering an entropy or weak solution (u, ‰, ◊), they may be satisfied only
almost everywhere in (0, T ).

Observe that from (2.2) we can deduce that ‰0 = f(u0)≠�u0
◊0

≠ ⁄. Using the
hypotheses on the initial data provided by (2.17), we can conclude that

‰0◊

1
2
0 œ L

2(�) . (2.54)

From (2.54), (2.17), (2.30) and (2.31) it follows that all the terms apart from
the last one on the right hand side of (2.53) are bounded. On the other hand,
all the left hand side term of (2.53) are positive, hence we deduce

cV

2 Î‰
2
◊(·)ÎL1(�) Æ c + c‡cflT + c‡cfl

⁄
·

0
Î‰

2
◊ÎL1(�)dt , ’· œ [0, T ] .

Gronwall’s Lemma then yields

cV

2 Î‰
2
◊(·)ÎL1(�) Æ (c + c‡cflT )e

2c‡cfl
cV

·
, ’· œ [0, T ] ,

whence
⁄

·

0
Î‰

2
◊ÎL1(�)dt Æ c(‡, fl, T ) , ’· œ [0, T ] ,

where c(‡, fl, T ) is a constant depending on the parameters ‡, fl and T .
It follows that (2.53) can be rewritten as

⁄

�
cV

1
‰

2
◊

2 (·) + k0
2◊

(·) + k1
(2 ≠ —)(1 ≠ —)◊1≠—

(·)
2

dx +

+ cV

⁄
·

0
ÎutÎ2

L2(�)dt +
⁄

·

0

...Ò
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‰
2

2 + ⁄‰ + k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
2

L2(�)
dt +

+
⁄

·

0

⁄

�

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2
|Ò‰|2 dxdt +

+
⁄

·

0

⁄

�
k(◊)

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2---Ò
1
◊

---
2
dxdt +

+ (b1 ≠ 4‡)
⁄

·

0

...Ò‰
2

2

...
2

L2(�)
dt + cV

⁄
·

0

⁄

�
a1fl(fl ≠ 1)|u|fl≠2|Ò‰|2 dxdt

Æ c(‡, fl, T ) , ’· œ [0, T ] . (2.55)
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• — = 1: Integrating (2.52) with respect to time, we obtain

⁄

�
cV
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‰
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◊

2 (·) + k0
2◊

(·)
2

dx +

+ cV

⁄
·

0
ÎutÎ2

L2(�)dt +
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·

0
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2◊2 + k1

◊
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L2(�)
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+
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·

0

⁄
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◊

2
|Ò‰|2 dxdt +

⁄
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⁄

�
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1
k0
2◊2 + k1

◊

2---Ò
1
◊
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2
dxdt +

+ (b1 ≠ 4‡)
⁄

·

0
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2
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...
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L2(�)
dt + cV

⁄
·
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⁄

�
a1fl(fl ≠ 1)|u|fl≠2|Ò‰|2 dxdt

Æ
⁄

�
cV k1 log ◊(·) dx +

⁄

�
cV

1
‰

2
0◊0
2 + k0

2◊0
≠ k1 log ◊0

2
dx +

+ (b2 + 2cV a2)ÎÒ‰Î2
L2(0, T ; L2(�)) + ⁄
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0
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�
k(◊)

---Ò
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dxdt +

+ c‡cflT + c‡cfl

⁄
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0
Î‰

2
◊ÎL1(�)dt , ’· œ [0, T ] .

Observe that, since log s Æ s , ’s œ R+, using (2.24), we can deduce
⁄

�
log ◊(·) dx Æ

⁄

�
◊(·) dx Æ c , ’· œ [0, T ] .

On the other hand, since | log s| Æ 1
s

+ s , ’s œ R+
,

≠
⁄

�
cV k1 log ◊0 dx Æ

⁄

�
cV k1| log ◊0| dx Æ

⁄

�
cV k1

1 1
◊0

+ ◊0
2

dx .

It follows that
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(·)
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·
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1
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dxdt +
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...Ò‰
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...
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L2(�)
dt + cV

⁄
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�
a1fl(fl ≠ 1)|u|fl≠2|Ò‰|2 dxdt

Æ c +
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�
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1
‰

2
0◊0
2 + k0

2◊0
+ k1

◊0
+ k1◊0

2
dx +

+ (b2 + 2cV a2)ÎÒ‰Î2
L2(0, T ; L2(�)) + ⁄
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T

0
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�
k(◊)

---Ò
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◊
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2

dxdt +

+ c‡cflT + c‡cfl

⁄
·

0
Î‰

2
◊ÎL1(�)dt , ’· œ [0, T ] .

Proceeding analogously as done in the case — œ [0, 1), the regularities on the
initial data (2.54) and (2.17), together with (2.30) and (2.31), and Gronwall’s
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2.3. A priori estimates

Lemma allow us to conclude that
⁄
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a1fl(fl ≠ 1)|u|fl≠2|Ò‰|2 dxdt

Æ c(‡, fl, T ) , ’· œ [0, T ] . (2.56)

• — œ (1, 2): Integrating (2.51) with respect to time, we obtain
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whence, using (2.24),
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Æ c +
⁄

�
cV

1
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2
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2◊0
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dx + (b2 + 2cV a2)ÎÒ‰Î2
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◊ÎL1(�)dt , ’· œ [0, T ].

Proceeding analogously as done in the previous cases, the regularities on the
initial data (2.54) and (2.17), together with (2.30) and (2.31), and Gronwall’s
Lemma imply

⁄

�
cV

1
‰

2
◊

2 (·) + k0
2◊

(·)
2

dx +
⁄

�

k1◊
—≠1
0

(2 ≠ —)(— ≠ 1) dx +

+ cV

⁄
·

0
ÎutÎ2

L2(�)dt +
⁄

·

0

...Ò
1

‰
2

2 + ⁄‰ + k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
2

L2(�)
dt +

+
⁄

·

0

⁄

�

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—
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1
◊
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2
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�
a1fl(fl ≠ 1)|u|fl≠2|Ò‰|2 dxdt

Æ c(‡, fl, T ) , ’· œ [0, T ] . (2.57)

From (2.55), as well as from (2.56) and from (2.57), we can deduce that, in case
that — œ [0, 2),

Î‰
2
◊ÎLŒ(0, T ; L1(�)) Æ c , (2.58)

...
1
◊

...
LŒ(0, T ; L1(�))

Æ c , (2.59)

ÎutÎL2(0, T ; L2(�)) Æ c , (2.60)
...Ò

1
‰

2

2 + ⁄‰ + k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
L2(0, T ; L2(�))

Æ c , (2.61)

ÎÒ‰
2ÎL2(0, T ; L2(�)) Æ c , (2.62)

...
Ò‰

◊

...
L2(0, T ; L2(�))

Æ c , (2.63)
....

Ò‰

◊
1≠ —

2

....
L2(0, T ; L2(�))

Æ c , (2.64)

and, recalling that k is given by (2.16),
...Ò 1

◊2

...
L2(0, T ; L2(�))

Æ c , (2.65)
....Ò 1

◊
2≠ —

2

....
L2(0, T ; L2(�))

Æ c , (2.66)

...Ò 1
◊2≠—

...
L2(0, T ; L2(�))
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Note that (2.65) and (2.67) yield
...Ò

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
L2(0, T ; L2(�))

Æ c . (2.68)

On the other hand, using (2.68), from (2.61) it follows that
...Ò

1
‰

2

2 + ⁄‰

2...
L2(0, T ; L2(�))

Æ c . (2.69)

Consequences

Higher regularity for ‰ . Firstly, observe that ‰ = ‰◊
1
2 ◊

≠ 1
2 , then from (2.58)

and (2.59), using Hölder’s inequality, we deduce

Î‰ÎLŒ(0, T ; L1(�)) Æ c . (2.70)

At this point, (2.30) and (2.70) together with the Poincaré-Wirtinger inequality
yield

Î‰ÎL2(0, T ; H1(�)) Æ c . (2.71)

Furthermore, from (2.60), using (2.1), we obtain

Î�‰ÎL2(0, T ; L2(�)) Æ c . (2.72)

By classical regularity results for elliptic equations (cf. Appendix A.8), (2.71) and
(2.72) imply

Î‰ÎL2(0, T ; H2(�)) Æ c , (2.73)

whence, using the continuous embedding H
2(�) Òæ C(�̄),

Î‰Î
L2(0, T ; C(�̄)) Æ c , (2.74)

while, thanks to the continuous embedding H
2(�) Òæ W

1,6(�), we infer

Î‰ÎL2(0, T ; W 1,6(�)) Æ c . (2.75)

Let us now estimate Î‰ÎL4(0, T ; L2(�)). Using standard interpolation, from (2.70)
and (2.74) we deduce

Î‰Î4
L4(0, T ; L2(�)) Æ

⁄
T

0
(Î‰Î

1
2
L1(�)Î‰Î

1
2
LŒ(�))

4
dt

Æ Î‰Î2
LŒ(0, T ; L1(�))Î‰Î2

L2(0, T ; LŒ(�)) Æ c ,

namely,
Î‰ÎL4(0, T ; L2(�)) Æ c ,

or equivalently,
Î‰

2ÎL2(0, T ; L1(�)) Æ c . (2.76)

Using the Poincaré-Wirtinger inequality, from (2.62) and (2.76) it follows that

Î‰
2ÎL2(0, T ; H1(�)) Æ c . (2.77)

47



Moreover, thanks to the continuous embedding H
1(�) Òæ L

6(�),

Î‰
2ÎL2(0, T ; L6(�)) Æ c , (2.78)

or equivalently,
Î‰ÎL4(0, T ; L12(�)) Æ c . (2.79)

Using the Gagliardo-Nirenberg interpolation inequality and then (2.70), we obtain

Î‰ÎLŒ(�) Æ cÎD2
‰Î

1
3
L2(�)Î‰Î

2
3
L12(�) + cÎ‰ÎL1(�) Æ cÎD2

‰Î
1
3
L2(�)Î‰Î

2
3
L12(�) + c ,

whence

Î‰Î3
LŒ(�) Æ cÎD2

‰ÎL2(�)Î‰Î2
L12(�) + c Æ cÎD2

‰Î2
L2(�) + cÎ‰Î4

L12(�) + c ,

where in the last inequality we also used Young’s inequality. Using regularities
given by (2.73) and (2.79), we can conclude that

Î‰ÎL3(0, T ; LŒ(�)) Æ c . (2.80)

Higher regularity for u . Let us consider (2.2), namely,

�u = f(u) ≠ ◊ ≠ ‰◊ .

Noting that ‰◊ can be written as ‰◊
1
2 ◊

1
2 , from (2.58) and (2.24), using Hölder’s

inequality, it follows that

Î‰◊Î
LŒ(0, T ; L4/3(�)) Æ Î‰◊

1
2 ÎLŒ(0, T ; L2(�))Î◊

1
2 ÎLŒ(0, T ; L4(�)) Æ c . (2.81)

On the other hand, (2.29) and (2.24) hold true. Hence, we obtain

Î�uÎ
LŒ(0, T ; L

4
3 (�))

Æ c . (2.82)

Combining (2.82) with (2.27), by classical elliptic regularity results (cf. Appendix
A.8), we deduce

ÎuÎ
LŒ(0, T ; W

2, 4
3 (�))

Æ c . (2.83)

Furthermore, from (2.80) together with (2.24) it follows that

Î‰◊ÎL3(0, T ; L2(�)) Æ c , (2.84)

whence, once more by comparision,

Î�uÎL3(0, T ; L2(�)) Æ c . (2.85)

Finally, taking into account (2.27), by classical elliptic regularity results (cf. Ap-
pendix A.8), we obtain

ÎuÎL3(0, T ; H2(�)) Æ c . (2.86)
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Higher regularity for powers of ◊ . Firstly, note that (2.24) and (2.72) imply

Î◊�‰ÎL2(0, T ; L1(�)) Æ c . (2.87)

Using (2.80) and (2.87), we deduce that

Î◊‰�‰Î
L

6
5 (0, T ; L1(�))

Æ c . (2.88)

Combining (2.87) and (2.88), we can conclude that

Î◊(‰ + ⁄)�‰Î
L

6
5 (0, T ; L1(�))

Æ c , (2.89)

in particular,
Î◊(‰ + ⁄)�‰ÎL1(0, T ; L1(�)) Æ c . (2.90)

On the other hand, (2.72) and (2.80) imply

Î‰�‰Î
L

6
5 (0, T ; L2(�))

Æ c , (2.91)

whence
Î(‰ + ⁄)�‰ÎL1(0, T ; L1(�)) Æ c . (2.92)

Let us now multiply (2.3) by ≠◊
≠‘, where ‘ œ (0, 1) is such that — ”= 1 + ‘, and

integrate it over �, obtaining

≠ cV

2 ≠ ‘

⁄

�
(◊2≠‘)t dx ≠

⁄

�
◊

1≠‘(‰ + ⁄)�‰ dx +
⁄

�
k(◊)Ò1

◊
· Ò◊

≠‘
dx = 0 ,

which can be rewritten as
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�
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---Ò
1
◊

---
2

dx = cV

2 ≠ ‘

d

dt

⁄

�
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2≠‘
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⁄

�
◊

1≠‘(‰ + ⁄)�‰ dx . (2.93)

Integrating (2.93) with respect to time,
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0

⁄

�
◊

1≠‘(‰ + ⁄)�‰ dxdt .

whence it follows that
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⁄
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⁄

�
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⁄
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⁄

�
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Using (2.24), (2.90) and (2.92), we deduce
⁄

T

0
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�
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Since k is given by (2.16), (2.94) becomes
⁄

T

0
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�
‘(k0◊
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---Ò
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◊
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=
⁄

T

0

⁄
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—≠3≠‘)|Ò◊|2 dxdt Æ c ,

whence
⁄

T

0

⁄

�
◊

—≠3≠‘|Ò◊|2 dxdt = 4
(— ≠ 1 ≠ ‘)2

⁄
T

0

⁄

�
|Ò◊

—≠1≠‘
2 |2 dxdt Æ c ,

which is
ÎÒ◊

—≠1≠‘
2 ÎL2(0, T ; L2(�)) Æ c‘ , (2.95)

where c‘ © |— ≠ 1 ≠ ‘|c.
Using the Poincaré-Wirtinger inequality, from (2.32) and (2.59) it follows that

...
1
◊

...
L2(0, T ; H1(�))

Æ c , (2.96)

whence, using the continuous embedding H
1(�) Òæ L

6(�),
...

1
◊

...
L2(0, T ; L6(�))

Æ c . (2.97)

Using once more the Poincaré-Wirtinger inequality and (2.32), from (2.65) and
(2.67) we can deduce that

...
1
◊2

...
L2(0, T ; H1(�))

Æ c (2.98)

and that ...
1

◊2≠—

...
L2(0, T ; H1(�))

Æ c , (2.99)

respectively. Moreover, using the continuous emebedding H
1(�) Òæ L

6(�), (2.98)
and (2.99) yield

...
1
◊

...
L4(0, T ; L12(�))

=
...

1
◊2

...
1
2

L2(0, T ; L6(�))
Æ c (2.100)

and ...
1

◊2≠—

...
L2(0, T ; L6(�))

Æ c , (2.101)

respectively.

Consequences for — œ [0, 1)

Consider the case when — œ [0, 1) in (2.16). Note that Ò◊
—≠1 = (1≠—)◊—Ò1

◊
. Using

Hölder’s inequality together with (2.24) and (2.32), we obtain

ÎÒ◊
—≠1Î

L2(0, T ; L

2
—+1 (�))

Æ (1 ≠ —)Î◊
—Î

LŒ(0, T ; L

2
— (�))

...Ò1
◊

...
L2(0, T ; L2(�))

Æ c .

(2.102)
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2.3. A priori estimates

Since — œ [0, 1), (2.59) and (2.102) together with the Poincaré-Wirtinger inequality
yield

Î◊
—≠1Î

L2(0, T ; W
1, 2

—+1 (�))
Æ c . (2.103)

Let v œ W
1, p(�), p > 3. Multiplying (2.11) by 1

◊2≠— v and integrating over �,
we obtain

cV

— ≠ 1È(◊—≠1)t, vÍ(W 1, p)Õ(�), W 1, p(�) =
⁄

�
Ò

1
‰

2

2 + ⁄‰

2
· Ò

1 1
◊2≠—

v

2
dx +

+
⁄

�

k(◊)
◊

Ò1
◊

· Ò
1 1

◊2≠—
v

2
dx +

⁄

�

|Ò‰|2

◊2≠—
v dx +

⁄

�

k(◊)
◊2≠—

---Ò
1
◊

---
2
v dx ,

namely,
cV

— ≠ 1È(◊—≠1)t, vÍ(W 1, p)Õ(�), W 1, p(�)

=
⁄

�
Ò

1
‰

2

2 + ⁄‰

2
·
1
vÒ 1

◊2≠—
+ 1

◊2≠—
Òv

2
dx +

+
⁄

�

k(◊)
◊

Ò1
◊

·
11

1 + 1
2 ≠ —

2
vÒ 1

◊2≠—
+ 1

◊2≠—
Òv

2
dx +

⁄

�

|Ò‰|2

◊2≠—
v dx . (2.104)

Firstly, consider the first right hand side term of (2.104). Using Hölder’s inequality,
we can deduce

⁄

�

---Ò
1

‰
2

2 + ⁄‰

2
·
1
vÒ 1

◊2≠—
+ 1

◊2≠—
Òv

2--- dx

Æ
...Ò

1
‰

2

2 + ⁄‰

2...
L2(�)

1...Ò 1
◊2≠—

...
L2(�)

ÎvÎLŒ(�) +
...

1
◊2≠—

...
L6(�)

ÎÒvÎL3(�)
2

Æ cp

...Ò
1

‰
2

2 + ⁄‰

2...
L2(�)

...
1

◊2≠—

...
H1(�)

ÎvÎW 1,p(�) , (2.105)

where in the last inequality we used the continuous embeddings H
1(�) Òæ L

6(�)
and W

1, p(�) Òæ C(�̄), which holds true for p > 3, and we denoted by cp an
embedding constant depending on p > 3 and possibly exploding as p √ 3.
As for the second right hand side term of (2.104), using (2.48), we can rewrite it
as

⁄

�

k(◊)
◊

Ò1
◊

·
13 ≠ —

2 ≠ —
vÒ 1

◊2≠—
+ 1

◊2≠—
Òv

2
dx =

=
⁄

�
Ò

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2
·
13 ≠ —

2 ≠ —
vÒ 1

◊2≠—
+ 1

◊2≠—
Òv

2
dx .

Using Hölder’s inequality, we obtain
⁄

�

---
k(◊)

◊
Ò1

◊
·
13 ≠ —

2 ≠ —
vÒ 1

◊2≠—
+ 1

◊2≠—
Òv

2--- dx

Æ
...Ò

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
L2(�)

13 ≠ —

2 ≠ —

...Ò 1
◊2≠—

...
L2(�)

ÎvÎLŒ(�)+

+
...

1
◊2≠—

...
L6(�)

ÎÒvÎL3(�)
2

Æ cp

...Ò
1

k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
L2(�)

...
1

◊2≠—

...
H1(�)

ÎvÎW 1,p(�) (2.106)
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where in the last inequality we used once more Sobolev’s embeddings.
Finally, let us consider the third right hand side term of (2.104). Hölder’s inequality
and H

1(�) Òæ L
6(�) yield

⁄

�

---
|Ò‰|2

◊2≠—
v

--- dx Æ
....

Ò‰

◊
1≠ —

2

....
2

L2(�)
ÎvÎLŒ(�) Æ cp

....
Ò‰

◊
1≠ —

2

....
2

L2(�)
ÎvÎW 1, p(�) . (2.107)

From (2.104), using (2.105), (2.106) and (2.107), we can deduce that

cV

— ≠ 1 |È(◊—≠1)t, vÍ(W 1, p)Õ(�), W 1, p(�)| Æ cp

1...Ò
1

‰
2

2 + ⁄‰

2...
L2(�)

...
1

◊2≠—

...
H1(�)

+

+
...Ò

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
L2(�)

...
1

◊2≠—

...
H1(�)

+

+
....

Ò‰

◊
1≠ —

2

....
2

L2(�)

2
ÎvÎW 1, p(�) ,

which implies

cV

— ≠ 1Î(◊—≠1)tÎ(W 1, p)Õ(�) = sup
vœW 1, p(�)

v ”=0

cV

— ≠ 1
|È◊—≠1)t, vÍ(W 1, p(�))Õ, W 1, p(�)|

ÎvÎW 1, p(�)

Æ cp

1...Ò
1

‰
2

2 + ⁄‰

2...
L2(�)

...
1

◊2≠—

...
H1(�)

+

+
...Ò

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
L2(�)

...
1

◊2≠—

...
H1(�)

+
....

Ò‰

◊
1≠ —

2

....
2

L2(�)

2
. (2.108)

Integrating (2.108) with respect to time and using Hölder’s inequality, we obtain

cV

— ≠ 1

⁄
T

0
Î(◊—≠1)tÎ(W 1, p)Õ(�) dt

Æ cp

1...Ò
1

‰
2

2 + ⁄‰

2...
L2(0, T ; L2(�))

...
1

◊2≠—

...
L2(0, T ; H1(�))

+

+
...Ò

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
L2(0, T ; L2(�))

...
1

◊2≠—

...
L2(0, T ; H1(�))

+

+
....

Ò‰

◊
1≠ —

2

....
2

L2(0, T ; L2(�))

2
.

Taking into account (2.68), (2.69), (2.99) and (2.64), we can conclude that

Î(◊—≠1)tÎL1(0, T ; (W 1, p(�))Õ) Æ cp , for every p > 3 . (2.109)

Consequences for — = 1

Consider the case when — = 1 in (2.16). Note that Ò log ◊ = ◊Ò1
◊
. Using Hölder’s

inequality together with (2.24) and (2.32), we obtain

ÎÒ log ◊ÎL2(0, T ; L1(�)) Æ Î◊ÎLŒ(0, T ; L2(�))
...Ò1

◊

...
L2(0, T ; L2(�))

Æ c . (2.110)
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2.3. A priori estimates

On the other hand, since | log s| Æ s + 1
s
, ’s œ R+, then

Îlog ◊ÎLŒ(0, T ; L1(�)) Æ Î◊ÎLŒ(0, T ; L1(�)) +
...

1
◊

...
LŒ(0, T ; L1(�))

Æ c , (2.111)

where in the last inequality we used (2.24) and (2.59). Using the Poincaré-Wirtinger
inequality, (2.110) and (2.111) yield

Îlog ◊ÎL2(0, T ; W 1,1(�)) Æ c . (2.112)

Let v œ W
1, p(�), p > 3. Multiplying (2.11) by 1

◊
v and integrating over �, we

obtain

cV È(log ◊)t, vÍ(W 1, p)Õ(�), W 1, p(�) =
⁄

�
Ò

1
‰

2

2 + ⁄‰

2
· Ò

11
◊

v

2
dx +

+
⁄

�

k(◊)
◊

Ò1
◊

· Ò
11

◊
v

2
dx +

⁄

�

|Ò‰|2

◊
v dx +

⁄

�

k(◊)
◊

---Ò
1
◊

---
2
v dx ,

namely,

cV È(log ◊)t, vÍ(W 1, p)Õ(�), W 1, p(�) =
⁄

�
Ò

1
‰

2

2 + ⁄‰

2
·
1
vÒ1

◊
+ 1

◊
Òv

2
dx +

+
⁄

�

k(◊)
◊

Ò1
◊

·
1
2vÒ1

◊
+ 1

◊
Òv

2
dx +

⁄

�

|Ò‰|2

◊
v dx . (2.113)

Note that the right hand side of (2.113) is equal to that of (2.104) with — = 1.
Hence, proceeding analogously as done in the case — œ [0, 1), it is not di�cult to
conclude that

Î(log ◊)tÎL1(0, T ; (W 1, p)Õ(�)) Æ cp , for every p > 3 , (2.114)

where cp is an embedding constant depending on p > 3 possibly exploding as p √ 3.

Consequences for — œ (1, 2)

Consider the case when — œ (1, 2) in (2.16). Let ‘ > 0 be such that — > 1+‘. Then,
noting that 4

—≠1≠‘
> 2, from (2.24) we deduce

Î◊
—≠1≠‘

2 ÎL2(0, T ; L2(�)) Æ cÎ◊
—≠1≠‘

2 Î
LŒ(0, T ; L

4
—≠1≠‘ (�))

Æ c‘ . (2.115)

From (2.95) and (2.115) it follows that

Î◊
—≠1≠‘

2 ÎL2(0, T ; H1(�)) Æ c‘ , (2.116)

whence, using the continuous embedding H
1(�) Òæ L

6(�), we obtain

Î◊
—≠1≠‘

2 ÎL2(0, T ; L6(�)) Æ c‘ . (2.117)

Using (2.115) and (2.117) together with the continuous embedding

L
Œ(0, T ; L

4
—≠1≠‘ (�)) fl L

2(0, T ; L
6(�)) Òæ L

q(� ◊ (0, T )),
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where q = 2
3

3—+1≠3‘

—≠1≠‘
, we can conclude that

Î◊ÎLq̄(�◊(0, T )) Æ c, where q̄ = 3— + 1 ≠ 3‘

3 . (2.118)

Observe that
q̄ > 2 ≈∆ — >

5
3 + ‘ . (2.119)

Thus, for — >
5
3 we can choose a suitable ‘ > 0 such that — >

5
3 + ‘ and then we

obtain an additional regularity for ◊ that will play a crucial role in Subsection 2.4.1.
In particular, consider k(◊)Ò1

◊
which can be rewritten as ◊

k(◊)
◊

Ò1
◊

= ◊Ò
1

k0
2◊2 +

k1
(2≠—)◊2≠—

2
due to (2.48). For — >

5
3 , we can choose a suitable ‘ > 0 such that

— >
5
3 + ‘, then (2.118) and (2.68) together with Hölder’s inequality yield
...k(◊)Ò1

◊

...
Lr̄(�◊(0, T ))

Æ c , where r̄ = 2q̄

2 + q̄
œ

1
1,

14
13

2
depends only on — .

(2.120)
Let ‘ > 0 still be such that — > 1 + ‘. From (2.24) we also deduce that

Î◊
3≠—+‘

2 Î
LŒ(0, T ; L

4
3≠—+‘ (�))

Æ c‘ . (2.121)

Observe that Ò◊ = 2
—≠1≠‘

◊
3≠—+‘

2 Ò◊
—≠1≠‘

2 . Using Hölder’s inequality together with
(2.95) and (2.121), we obtain

ÎÒ◊Î
L2(0, T ; L

4
5≠—+‘ (�))

Æ 2
—≠1≠‘

Î◊
3≠—+‘

2 Î
LŒ(0, T ; L

4
3≠—+‘ (�))

ÎÒ◊
—≠1≠‘

2 ÎL2(0, T ; L2(�))

Æ c‘ . (2.122)

Note that, since ‘ > 0 is such that — > 1 + ‘ and — < 2, then 1 <
4

5≠—+‘
<

4
3 .

Hence, using (2.24) and (2.122) together with the Poincaré-Wirtinger inequality,
we can conclude that

Î◊Î
L2(0, T ; W

1, 4
5≠—+‘ (�))

Æ c‘ . (2.123)

Testing (2.11) by v œ W
1, p(�), p > 3, we obtain

cV È◊t, vÍ(W 1, p)Õ(�), W 1, p(�) =
⁄

�
Ò

1
‰

2

2 + ⁄‰

2
· Òv dx +

⁄

�

k(◊)
◊

Ò1
◊

· Òv dx +

+
⁄

�
|Ò‰|2v dx +

⁄

�
k(◊)

---Ò
1
◊

---
2
v dx . (2.124)

Using Hölder’s inequality and (2.48), we deduce
⁄

�

---Ò
1

‰
2

2 + ⁄‰

2
· Òv

--- dx Æ
...Ò

1
‰

2

2 + ⁄‰

2...
L2(�)

ÎÒvÎL2(�)

Æ cp

...Ò
1

‰
2

2 + ⁄‰

2...
L2(�)

ÎvÎW 1, p(�) ,
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2.4. Weak sequential stability

⁄

�

---
k(◊)

◊
Ò1

◊
· Òv

--- dx Æ
...Ò

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
L2(�)

ÎÒvÎL2(�)

Æ cp

...Ò
1

k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
L2(�)

ÎvÎW 1, p(�) ,

⁄

�
||Ò‰|2v| dx Æ Î|Ò‰|2ÎL1(�)ÎvÎLŒ(�) = ÎÒ‰Î2

L2(�)ÎvÎLŒ(�)

Æ cpÎÒ‰Î2
L2(�)ÎvÎW 1, p(�) ,

⁄

�

---k(◊)
---Ò

1
◊

---
2
v

--- dx Æ ÎvÎLŒ(�)

⁄

�
k(◊)

---Ò
1
◊

---
2

dx

Æ cpÎvÎW 1, p(�)

⁄

�
k(◊)

---Ò
1
◊

---
2

dx ,

where in the last inequalities we used once more the continuous embeddings H
1(�) Òæ

L
6(�) and W

1, p(�) Òæ C(�̄), which holds true for p > 3, and we denoted by cp an
embedding constant depending on p > 3 and possibly exploding as p √ 3. From
(2.124) it then follows that

cV |È◊t, vÍ(W 1, p)Õ(�), W 1, p(�)| Æ cpÎvÎW 1, p(�)
1...Ò

1
‰

2

2 + ⁄‰

2...
L2(�)

+

+
...Ò

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
L2(�)

+ ÎÒ‰Î2
L2(�) +

⁄

�
k(◊)

---Ò
1
◊

---
2

dx

2
,

which implies

cV Î◊tÎ(W 1, p)Õ(�) = sup
vœW 1, p(�)

v ”=0

cV |È◊t, vÍ(W 1, p(�))Õ, W 1, p(�)|
ÎvÎW 1, p(�)

Æ cp

1...Ò
1

‰
2

2 + ⁄‰

2...
L2(�)

+
...Ò

1
k0
2◊2 + k1

(2 ≠ —)◊2≠—

2...
L2(�)

+

+ ÎÒ‰Î2
L2(�) +

⁄

�
k(◊)

---Ò
1
◊

---
2

dx

2
. (2.125)

Integrating (2.125) with respect to time and using the regularities given by (2.69),
(2.68), (2.30) and (2.31), we can conclude that

Î◊tÎL1(0, T ; (W 1, p)Õ(�)) Æ cp , for every p > 3 . (2.126)

2.4 Weak sequential stability

In this section, we assume to have a sequence {(un, ‰n, ◊n)}n of solutions satisfying
a proper approximation of the “strong” system of equations (2.1)-(2.2)-(2.3). This
family is assumed to comply with the a priori bounds proved in Section 2.3 uni-
formly with respect to n œ N. Our aim is showing, by weak compactness arguments,
that at least a subsequence converges in a suitable way to an entropy solution to
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our problem, i.e., to a limit triple (u, ‰, ◊) satisfying the statement given in Defini-
tion 2.2.1. Furthermore, in the subcase when — œ (5

3 , 2) in (2.16), we will be able to
show the convergence to a weak solution, according to Definition 2.2.2. Actually, to
further simplify the notation, we intend that all the convergence relations appear-
ing in the following are to be considered up to the extraction of (non-relabelled)
subsequences.

Throughout the section, we will assume the reader to be familiar with the no-
tions and the results presented in Appendix A.2-A.12. However, sometimes we will
explicitly recall them in order to emphasize their use.
As for the notation, we will denote the weak convergence by Ô and the weak star
one by ú

Ô .

Collecting the bounds proved in the previous section, we deduce the following
convergence relations. In particular, from (2.83), (2.86) and (2.60) we infer

un

ú
Ô u in L

Œ(0, T ; W
2,

4
3 (�)) fl L

3(0, T ; H
2(�)) fl H

1(0, T ; L
2(�)) , (2.127)

whereas, from (2.73) and (2.79),

‰n Ô ‰ in L
2(0, T ; H

2(�)) fl L
4(0, T ; L

12(�)) , (2.128)

and from (2.24)
◊n

ú
Ô ◊ in L

Œ(0, T ; L
2(�)). (2.129)

Noting that

W
2,

4
3 (�) µµ L

q(�) Òæ L
1(�) , 1 < q < 12 ,

(2.127) together with the Aubin-Lions-Simon Lemma yield

un æ u strongly in C([0, T ]; L
q(�)), 1 < q < 12 . (2.130)

From (2.130) we can deduce a convergence relation for {f(un)}n, where f is given
by (2.15). Indeed, observe that f(un) ≠ f(u) can be rewritten as

f(un) ≠ f(u) =
1 ⁄ 1

0
f

Õ(sun + (1 ≠ s)u) ds

2
(un ≠ u) ,

where f
Õ(sun +(1≠s)u) = a1fl(fl≠1)|sun +(1≠s)u|fl≠2 ≠2a2, a1, a2 > 0, fl œ [3,

7
2 ],

by (2.41). Using Hölder’s inequality, we obtain

Îf(un) ≠ f(u)ÎLr(�) Æ
...

⁄ 1

0
f

Õ(sun + (1 ≠ s)u) ds

...
Ls(�)

Îun ≠ uÎLq(�) ,

where r is such that 1
r

= 1
s

+ 1
q

for s Æ 12
fl≠2 and q < 12. Thus, r <

12
fl≠1 . It follows

that

Îf(un) ≠ f(u)ÎLr(�) Æ
1 ⁄ 1

0
Îf

Õ(sun + (1 ≠ s)u)ÎLs(�)ds

2
Îun ≠ uÎLq(�) ,
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namely,

Îf(un) ≠ f(u)ÎLr(�)

Æ
1 ⁄ 1

0
Îa1fl(fl ≠ 1)|sun + (1 ≠ s)u|fl≠2 ≠ 2a2ÎLs(�)ds

2
Îun ≠ uÎLq(�) .

Due to (2.83) and the Sobolev embedding W
2,

4
3 (�) Òæ L

q(�), q Æ 12, {|un|fl≠2}n

and |u|fl≠2 are uniformly bounded in L
Œ((0, T ); L

s(�)), s Æ 12
fl≠2 . Thus, we obtain

Îf(un) ≠ f(u)ÎLr(�) Æ cflÎun ≠ uÎLq(�) ,

whence, using the convergence relation (2.130), we can conclude that

f(un) æ f(u) strongly in C([0, T ]; L
r(�)), 1 Æ r <

12
fl ≠ 1 , (2.131)

where 12
fl≠1 œ [24

5 , 6] for fl œ [3,
7
2 ].

Furthermore, since

W
2,

4
3 (�) µµ W

1,q
ú(�) Òæ L

1(�) , 1 Æ q
ú

<
12
5 ,

and
H

2(�) µµ W
1,r

ú(�) Òæ L
1(�) , 1 Æ r

ú
< 6 ,

then we can use again (2.127) and the Aubin-Lions-Simon Lemma to conclude that

un æ u strongly in C([0, T ]; W
1,q

ú(�)), 1 Æ q
ú

<
12
5 , (2.132)

and that
un æ u strongly in L

3([0, T ]; W
1,r

ú(�)), 1 Æ r
ú

< 6 . (2.133)

We now show that { 1
◊n

}n converges to 1
◊

almost everywhere in � ◊ (0, T ).
To this aim, let us consider the cases 0 < — < 1, — = 1 and 1 < — < 2 separately.

• 0 < — < 1 : From (2.103) and (2.109) we deduce that {◊
—≠1
n }n and {(◊—≠1

n )t}n

are uniformly bounded in L
2(0, T ; W

1,
2

—+1 (�)) and in L
1(0, T ; (W 1,p)Õ(�)) ,

for any p > 3, respectively. Noting that

W
1,

2
—+1 (�) µµ L

s
ú(�) Òæ (W 1,p)Õ(�) , 1 Æ s

ú
<

6
3— + 1 , p > 3 ,

and using the Aubin-Lions-Simon Lemma, we obtain

◊
—≠1
n æ ÷ strongly in L

2(0, T ; L
s

ú(�)), 1 Æ s
ú

<
6

3— + 1 .

In particular, ◊
—≠1
n æ ÷ almost everywhere in � ◊ (0, T ), thus ◊n æ ÷

1
—≠1

almost everywhere in �◊(0, T ). Since (2.24) holds true, we deduce that ◊n Ô
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÷
1

—≠1 weakly in L
p(0, T ; L

2(�)) , p < +Œ, (cf. Appendix A.10). On the other
hand, we have convergence relation (2.129). Hence, due to the uniqueness
of the weak limit, we can conclude that ◊ = ÷

1
—≠1 almost everywhere in

� ◊ (0, T ). It then follows that

◊
—≠1
n æ ◊

—≠1 strongly in L
2(0, T ; L

s
ú(�)), 1 Æ s

ú
<

6
3— + 1 . (2.134)

Thus, ◊
—≠1
n æ ◊

—≠1 almost everywhere in � ◊ (0, T ), whence ◊n æ ◊ and
1
◊ n

æ 1
◊

almost everywhere in � ◊ (0, T ).

• — = 1 : From (2.112) and (2.114) we deduce that {log ◊n}n and {(log ◊n)t}n

are uniformly bounded in L
2(0, T ; W

1,1(�)) and in L
1(0, T ; (W 1,p)Õ(�)), for

any p > 3, respectively. Noting that

W
1,1(�) µµ L

s
ú(�) Òæ (W 1,p)Õ(�) , 1 Æ s

ú
<

3
2 , p > 3 ,

and using the Aubin-Lions-Simon Lemma, proceeding as done in the previous
case, we can conclude that

log ◊n æ log ◊ strongly in L
2(0, T ; L

s
ú(�)), 1 Æ s

ú
<

3
2 . (2.135)

It follows that log ◊n æ log ◊ almost everywhere in �◊(0, T ), whence ◊n æ ◊

and 1
◊ n

æ 1
◊

almost everywhere in � ◊ (0, T ).

• 1 < — < 2 : From (2.123) and (2.126) we deduce that, for any arbitrary
small ‘ > 0 such that — > 1 + ‘ , {◊n}n and {(◊n)t}n are uniformly bounded
in L

2(0, T ; W
1,

4
5≠—+‘ (�)) and in L

1(0, T ; (W 1,p)Õ(�)), for any p > 3, respec-
tively. Noting that

W
1,

4
5≠—+‘ (�) µµ L

s
ú(�) Òæ (W 1,p)Õ(�) , 1 Æ s

ú
<

12
11 ≠ 3— + 3‘

, p > 3 ,

and using Aubin-Lions-Simon Lemma, taking ‘ small enough, we can conclude
that

◊n æ ◊ strongly in L
2(0, T ; L

s
ú(�)), 1 Æ s

ú
<

12
11 ≠ 3—

. (2.136)

As above, it follows that ◊n æ ◊ almost everywhere in � ◊ (0, T ). Thus,
1
◊ n

æ 1
◊

almost everywhere in � ◊ (0, T ).

Next, from (2.100) we deduce that { 1
◊n

}n is uniformly bounded in L
4(0, T ; L

12(�)).
Since 1

◊ n
æ 1

◊
almost everywhere in �◊ (0, T ), we can conclude that (cf. Appendix

A.10)

1
◊n

æ 1
◊

strongly in L
s(0, T ; L

q(�)) , 1 Æ s < 4, 1 Æ q < 12 . (2.137)

From (2.96) we deduce that { 1
◊n

}n is uniformly bounded in L
2(0, T ; H

1(�)), hence
it weakly converges to a function ’ in L

2(0, T ; H
1(�)). Since L

2(0, T ; H
1(�)) Òæ
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L
s(0, T ; L

q(�)) , 1 Æ s Æ 2, 1 Æ q Æ 6 , from (2.137) and the uniqueness of the
weak limit it follows that ’ = 1

◊
almost everywhere in �◊(0, T ). Since Ò can be con-

sidered as a continuous linear operator from L
2(0, T ; H

1(�)) to L
2(0, T ; L

2(�)),
then we can conclude that

Ò 1
◊n

Ô Ò1
◊

in L
2(0, T ; L

2(�)) . (2.138)

From (2.101) we deduce that
) 1

◊
2≠—
n

*
n

is uniformly bounded in L
2(0, T ; L

6(�)).
Since 1

◊ n
æ 1

◊
almost everywhere in �◊(0, T ), then 1

◊
2≠—
n

æ 1
◊2≠— almost everywhere

in � ◊ (0, T ). Thus, we obtain (cf. Appendix A.10)
1

◊
2≠—
n

Ô
1

◊2≠—
in L

2(0, T ; L
6(�)) .

From (2.99) we deduce that
) 1

◊
2≠—
n

*
n

is uniformly bounded in L
2(0, T ; H

1(�)),
hence it weakly converges in L

2(0, T ; H
1(�)). Proceeding as done above, we can

conclude that
Ò 1

◊
2≠—
n

Ô Ò 1
◊2≠—

in L
2(0, T ; L

2(�)) . (2.139)

Analogously, if we consider { 1
◊2

n
}n, from (2.100) and the almost everywhere conver-

gence we deduce
1
◊2

n

Ô
1
◊2 in L

2(0, T ; L
6(�)) ,

then, thanks to (2.98), we can conlude that

Ò 1
◊2

n

Ô Ò 1
◊2 in L

2(0, T ; L
2(�)) . (2.140)

Note that in Section 2.3, we implicitly assumed the temperature ◊ to be (almost
everywhere) positive. This fact is used in several estimates which, otherwise, would
not make sense. Positivity of {◊n}n should be shown, indeed, at the n-level, i.e.,
for the hypothetical regularized problem which we decided not to detail here. We
cannot give here a proof of this fact, since this would require to provide the details of
the regularization. However, we can at least show that, if {◊n}n is almost everywhere
positive, and satisfies the estimates given in Section 2.3, then positivity is preserved
in the limit. To see this, we first notice that, for — = 1 we have convergence relation
(2.135), hence the integrability of log ◊ allows us to conclude that ◊ > 0 almost
everywhere in � ◊ (0, T ). As for the cases — œ [0, 1) or — œ (1, 2), note that
| log s| Æ s + 1

s
, ’s œ R+. Thus, (2.24) and (2.96) imply Îlog ◊nÎL2(0, T ; L2(�)) Æ

c, ’n œ N. Since we showed that ◊n æ ◊ almost everywhere in �◊(0, T ), we obtain
(cf. Appendix A.10)

log ◊n æ log ◊ strongly in L
r(0, T ; L

r(�)), r < 2 .

Once again, due to the integrability of log ◊, we can conclude that ◊ > 0 almost
everywhere in � ◊ (0, T ).
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In order to simplify the notation, from now on we will denote exponents such
as p ≠ ” and p + ”, for a properly chosen small ” > 0, by p

≠ and p
+, respectively.

Let us now consider the di�erence between ‰n and ‰m, ’n, m œ N, which is given
by (2.2), namely,

‰n ≠ ‰m = ≠ � (un ≠ um)
◊n

≠ �um

1 1
◊n

≠ 1
◊m

2
+

+ f (un) ≠ f (um)
◊n

+ f (um)
1 1

◊n

≠ 1
◊m

2
. (2.141)

Testing (2.141) by v œ W
1, p(�), p > 3, and integrating by parts the second term

on the right hand side, we obtain
⁄

�
(‰n ≠ ‰m)v dx =

⁄

�
Ò(un ≠ um)

1
vÒ 1

◊n

+ 1
◊n

Òv

2
dx +

≠
⁄

�
�um

1 1
◊n

≠ 1
◊m

2
v dx +

⁄

�

f(un) ≠ f(um)
◊n

v dx +

+
⁄

�
f(um)

1 1
◊n

≠ 1
◊m

2
v dx . (2.142)

Let us consider the first term on the right hand side of (2.142). Using Hölder’s
inequality, from (2.96) we deduce

⁄

�

---Ò(un ≠ um)
1
vÒ 1

◊n

+ 1
◊n

Òv

2--- dx

Æ ÎÒ(un ≠ um)Î
L6≠ (�)

1...vÒ 1
◊n

...
L

6
5

+
(�)

+
...

1
◊n

Òv

...
L

6
5

+
(�)

2

Æ ÎÒ(un ≠ um)Î
L6≠ (�)

1...Ò 1
◊n

...
L2(�)

ÎvÎ
L3+ (�) +

...
1
◊n

...
L2(�)

ÎÒvÎ
L3+ (�)

2

Æ cpÎÒ(un ≠ um)Î
L6≠ (�)

...
1
◊n

...
H1(�)

ÎvÎW 1, p(�) , (2.143)

where we denoted by cp an embedding constant depending on p > 3 and possibly
exploding as p √ 3.
As for the second term on the right hand side of (2.142), using Hölder inequality,
it follows that

⁄
T

0

⁄

�

---�um

3 1
◊n

≠ 1
◊m

4
v

--- dxdt Æ Î�un ÎL2(�)
...
1 1

◊n

≠ 1
◊m

2
v

...
L2(�)

Æ Î�un ÎL2(�)
...

1
◊n

≠ 1
◊m

...
L2(�)

ÎvÎLŒ(�)

Æ cpÎ�un ÎL2(�)
...

1
◊n

≠ 1
◊m

...
L2(�)

ÎvÎW 1,p(�) ,

(2.144)

where in the last inequality we used the continuous embedding W
1, p(�) Òæ C(�̄) ,

holding for any p > 3.
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2.4. Weak sequential stability

Let us consider the third term on the right hand side of (2.142). Using Hölder’s
inequality together with the continuous embedding above, we obtain

⁄

�

---
f(un) ≠ f(um)

◊n

v

--- dx Æ Îf(un) ≠ f(um)ÎL2(�)
...

1
◊n

v

...
L2(�)

Æ Îf(un) ≠ f(um)ÎL2(�)
...

1
◊n

...
L2(�)

ÎvÎLŒ(�)

Æ cpÎf(un) ≠ f(um)ÎL2(�)
...

1
◊n

...
L2(�)

ÎvÎW 1, p(�) . (2.145)

Lastly, we consider the last term on the right hand side of (2.142). Using Hölder’s
inequality, we deduce

⁄

�

---f(um)
3 1

◊n

≠ 1
◊m

4
v

--- dx Æ
...

1
◊n

≠ 1
◊m

...
L2(�)

Îf(um) vÎL2(�)

Æ
...

1
◊n

≠ 1
◊m

...
L2(�)

Îf(um)ÎL2(�)ÎvÎLŒ(�)

Æ cp

...
1
◊n

≠ 1
◊m

...
L2(�)

Îf(um)ÎL2(�)ÎvÎW 1, p(�) ,

(2.146)

where in the last inequality we used once more Sobolev’s embedding.
Collecting (2.143),(2.144),(2.145), and (2.146), from (2.142) it follows that

|È‰n ≠ ‰m, vÍ(W 1,p)Õ(�), W 1,p(�)| =
---
⁄

�
(‰n ≠ ‰m)v dx

---

Æ cpÎvÎW 1,p(�)
1
ÎÒ(un ≠ um)Î

L6≠ (�)

...
1
◊n

...
H1(�)

+ Î�unÎL2(�)
...

1
◊n

≠ 1
◊m

...
L2(�)

+ Îf(un) ≠ f(um)ÎL2(�)
...

1
◊n

...
L2(�)

+
...

1
◊n

≠ 1
◊m

...
L2(�)

Îf(um)ÎL2(�)
2
, p > 3,

which implies

Î‰n ≠ ‰mÎ(W 1,p)Õ(�) = sup
vœW 1, p(�)

v ”=0

|È‰n ≠ ‰m, vÍ(W 1,p)Õ(�), W 1, p(�)|
ÎvÎW 1, p(�)

Æ cp

1
ÎÒ(un ≠ um)Î

L6≠ (�)

...
1
◊n

...
H1(�)

+ Î�unÎL2(�)
...

1
◊n

≠ 1
◊m

...
L2(�)

+ Îf(un) ≠ f(um)ÎL2(�)
...

1
◊n

...
L2(�)

+
...

1
◊n

≠ 1
◊m

...
L2(�)

Îf(um)ÎL2(�)
2

. (2.147)

Integrating (2.147) with respect to time and using Hölder’s inequality, we obtain
⁄

T

0
Î‰n ≠ ‰mÎ(W 1,p)Õ(�) dt Æ cp

1
ÎÒ(un ≠ um)Î

L2(0, T ; L6≠ (�))

...
1
◊n

...
L2(0, T ; H1(�))

+

+ Î�unÎL3(0, T ; L2(�))
...

1
◊n

≠ 1
◊m

...
L

3
2 (0, T ; L2(�))

+

+ Îf(un) ≠ f(um)ÎLŒ(0, T ; L2(�))
...

1
◊n

...
L1(0, T ; L2(�))

+

+
...

1
◊n

≠ 1
◊m

...
L1(0, T ; L2(�))

Îf(um)ÎLŒ(0, T ; L2(�))
2

.
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Thus, using (2.29), (2.85) and (2.96), it follows that
⁄

T

0
Î‰n ≠ ‰mÎ(W 1,p)Õ(�) dt Æ cp

1
ÎÒ(un ≠ um)Î

L2(0, T ; L6≠ (�))+

+
...

1
◊n

≠ 1
◊m

...
L

3
2 (0, T ; L2(�))

+

+ Îf(un) ≠ f(um)ÎLŒ(0, T ; L2(�))+

+
...

1
◊n

≠ 1
◊m

...
L1(0, T ; L2(�))

2
. (2.148)

Passing to the limit in (2.148), convergence relations (2.131), (2.133) and (2.137)
yield

Î‰n ≠ ‰mÎ
L1(0, T ; (W 1,p)Õ(�)) æ 0 , for every p > 3 . (2.149)

Let us consider Î‰n ≠ ‰mÎ
L1(0, T ; L2(�)), which can be rewritten as

Î‰n ≠ ‰mÎ
L1(0, T ; L2(�)) =

⁄
T

0
È‰n ≠ ‰m, ‰n ≠ ‰mÍ

1
2
(H2)Õ(�), H2(�) dt .

Thus,

Î‰n ≠ ‰mÎL1(0, T ; L2(�)) Æ
⁄

T

0
Î‰n ≠ ‰mÎ

1
2
(H2)Õ(�) Î‰n ≠ ‰mÎ

1
2
H2(�) dt

Æ
1 ⁄

T

0
Î‰n ≠ ‰mÎ(H2)Õ(�)

2 1
2
1 ⁄

T

0
Î‰n ≠ ‰mÎ

H2(�) dt

2 1
2

Æ Î‰n ≠ ‰mÎ
1
2
L1(0, T ;(H2)Õ(�))

!
Î‰nÎ

L1(0, T ; H2(�)) + Î‰mÎ
L1(0, T ; H2(�))

" 1
2

(2.150)

where in the second inequality we used Hölder’s inequality. Note that H
2(�) Òæ

W
1,p(�) for p Æ 6, hence

!
W

1,p
"Õ (�) Òæ (H2)Õ(�) for p Æ 6. Using (2.73) and

(2.149), from (2.150) we deduce

Î‰n ≠ ‰mÎ
L1(0, T ; L2(�)) æ 0 . (2.151)

By completeness, it follows the existence of › such that ‰n æ › strongly in
L

1 !
0, T ; L

2(�)
"
. In view of (2.128), by the uniqueness of the weak limit, we de-

duce that › = ‰ almost everywhere in � ◊ (0, T ). Hence, ‰n æ ‰ strongly in
L

1 !
0, T ; L

2(�)
"
, which implies in particular that ‰n æ ‰ almost everywhere in

� ◊ (0, T ).
Since {‰n}n is uniformly bounded in L

3 (0, T ; L
Œ(�)) due to (2.80), then we de-

duce (cf. Appendix A.10)

‰n æ ‰ strongly in L
r1(0, T ; L

r2(�)), r1 < 3, r2 < +Œ. (2.152)

Combining (2.129) together with (2.152), we can conclude that

‰n◊n Ô ‰◊ in L
r1(0, T ; L

r2(�)), r1 < 3 , r2 < 2 . (2.153)
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2.4. Weak sequential stability

Since ‰n æ ‰ almost everywhere in � ◊ (0, T ), then ‰
2
n æ ‰

2 almost everywhere
in � ◊ (0, T ). Thus, from (2.78) we deduce that (cf. Appendix A.10)

‰
2
n æ ‰

2 strongly in L
q1(0, T ; L

q2(�)), q1 < 2, q2 < 6 . (2.154)

On the other hand, from (2.77) it follows that {‰
2
n}n is uniformly bounded in

L
2 !

0, T ; H
1(�)

"
, hence it weakly converges in L

2(0, T ; H
1(�)). Due to the unique-

ness of the weak limit, we can conclude that

‰
2
n Ô ‰

2 in L
2(0, T ; H

1(�)).

Since Ò can be considered as a continuous linear operator from L
2(0, T ; H

1(�))
to L

2(0, T ; L
2(�)), then we obtain

Ò‰
2
n Ô Ò‰

2 in L
2(0, T ; L

2(�)). (2.155)

2.4.1 Subcase — œ (5
3 , 2)

As already observed, for — œ (5
3 , 2) in (2.16) we have additional regularity for ◊. In

particular, we refer to (2.118), which implies (2.120). In this subsection, we derive
some convergence relations which directly follow from (2.118) and thus hold only
for — œ (5

3 , 2). These will be fundamental in order to pass to the limit in the weak
form of the “heat” equation (2.21) and thus conclude about the existence of a weak
solution in the sense of Definition 2.2.2, as stated in Theorem 2.2.2.

Let v œ W
1,p(�), p = 2q̄

q̄≠2 , where q̄ is given by (2.118) with ‘ > 0 taken so small
that — >

5
3 + ‘. Thus, for 5/3 < — < 2, p œ (14, +Œ). Testing (2.3) by v, we obtain

ÈQ(◊n)t, vÍ(W 1,p)Õ(�),W 1,p(�) = ≠
⁄

�
◊n(‰n + ⁄)�‰nv dx +

⁄

�
k(◊n)Ò 1

◊n

· Òv dx.

(2.156)
Integrating (2.156) with respect to time between arbitrary ·, t œ [0, T ], · < t, we
deduce

ÈQ(◊n(t)), vÍ(W 1,p)Õ(�), W 1,p(�) ≠ ÈQ(◊n(·)), vÍ(W 1,p)Õ(�),W 1,p(�) =

≠
⁄

t

·

⁄

�
◊n(‰n + ⁄)�‰nv dxdt +

⁄
t

·

⁄

�
k(◊n)Ò 1

◊n

· Òv dxdt ,

whence, using Hölder’s inequality,

|ÈQ(◊n(t)), vÍ(W 1,p)Õ(�), W 1,p(�) ≠ ÈQ(◊n(·)), vÍ(W 1,p)Õ(�), W 1,p(�)|

Æ
⁄

t

·

1
Î◊n(‰n + ⁄)�‰nÎL1(�)ÎvÎLŒ(�) +

...k(◊n)Ò 1
◊n

...
Lr̄(�)

ÎÒvÎLp(�)
2
dt ,

(2.157)

where r̄ œ (1,
14
13) is the conjugate exponent to p œ (14, +Œ). Namely, r̄ has the same

expression as in (2.120). Using the continuous embedding W
1, p(�) Òæ C(�̄) , p œ
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(14, +Œ), from (2.157) it follows that

ÎQ(◊n(t)) ≠ Q(◊n(·))Î(W 1,p)Õ(�) =

= sup
vœW 1, p(�)

v ”=0

|ÈQ(◊n(t)), vÍ(W 1,p)Õ(�), W 1,p(�) ≠ ÈQ(◊n(·)), vÍ(W 1,p)Õ(�), W 1,p(�)|
ÎvÎW 1, p(�)

Æ c

⁄
t

·

1
Î◊n(‰n + ⁄)�‰nÎL1(�) +

...k(◊n)Ò 1
◊n

...
Lr̄(�)

2
dt .

Noting that r̄ > 1 and using Hölder’s inequality, we obtain

ÎQ(◊n(t)) ≠ Q(◊n(·))Î(W 1,p)Õ(�)

Æ cÎ◊n(‰n + ⁄)�‰nÎLr̄(0, T ; L1(�))Î1ÎLp(·,t) + c

...k(◊n)Ò 1
◊n

...
Lr̄((0, T )◊�)

Î1ÎLp(·,t) .

(2.158)

Since r̄ <
6
5 , from (2.158) it follows that

ÎQ(◊n(t)) ≠ Q(◊n(·))Î(W 1,p)Õ(�)

Æ cÎ◊n(‰n + ⁄)�‰nÎ
L

6
5 (0, T ; L1(�))

Î1ÎLp(s,t) + c

...k(◊n)Ò 1
◊n

...
Lr̄((0, T )◊�)

Î1ÎLp(s,t)

Æ c|t ≠ · |
1
p , t, · œ [0, T ] , (2.159)

where in the last inequality we used (2.89) and (2.120). From (2.159) we infer

ÎQ(◊n)ÎC0,–([0, T ]; (W 1,p)Õ(�)) =

= ÎQ(◊n)ÎC0([0, T ]; (W 1,p)Õ(�)) + sup
t,·œ[0,T ]

t”=·

ÎQ(◊n(t)) ≠ Q(◊n(·))Î(W 1,p)Õ(�)
|t ≠ · |– Æ c ,

(2.160)

where – = 1
p

œ (0,
1
14). Notice that {Q(◊n)}n µ C([0, T ]; L

2(�)) is implicitly
assumed, thanks to (2.24) and Remark 2.3.2.
Observe that from (2.159) it follows that the sequence {Q(◊n)}n is equicontinuous
with values in (W 1,p)Õ(�).
On the other hand, consider any Banach space X such that (W 1,p)Õ(�) µµ X.
For instance, X © (H3)Õ(�). Indeed, from the compact embedding H

3(�) µµ
W

2,3(�) µµ W
1,q(�), q œ [1, +Œ) , we deduce H

3(�) µµ W
1,p(�), p œ (14, +Œ).

Thus, (W 1,p)Õ(�) µµ (H3)Õ(�), p œ (14, +Œ) (cf. Appendix A.9).
In general, having (W 1,p)Õ(�) µµ X, then from (2.160) we obtain that {Q(◊n)}n

is pointwise relatively compact in X, i.e., {Q(◊n)}n is relatively compact in X,
’t œ [0, T ].
Using the Ascoli-Arzelà Theorem, we conclude that {Q(◊n)}n is relatively compact
in C0([0, T ]; X). It then follows that there exists ’ œ C0([0, T ]; X) such that

Q(◊n) æ ’ strongly in C0([0, T ]; X) . (2.161)
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On the other hand, for — œ (5
3 , 2), from (2.136) we can deduce that

◊
2
n æ ◊

2 strongly in L
1(0, T ; L

1(�)) . (2.162)

Recalling that Q(◊n) = cV
2 ◊

2
n and combining (2.161) with (2.162), we can conclude

that ’ = cV
2 ◊

2 almost everywhere in � ◊ (0, T ). In particular, ’ œ C0([0, T ]; X)
is a representative of cV

2 ◊
2 œ L

1((0, T ); L
1(�)) in the distributional sense. It then

follows that
Q(◊n) æ Q(◊) strongly in C0([0, T ]; X). (2.163)

As a consequence, we have

Q(◊n(t)) æ Q(◊(t)) strongly in X, ’t œ [0, T ] . (2.164)

Combining (2.24) with (2.118), we obtain

◊n

ú
Ô ◊ in L

Œ(0, T ; L
2(�)) fl L

q̄(� ◊ (0, T )) , (2.165)

where q̄ = 3—+1≠3‘

3 > 2 for ‘ > 0 such that — >
5
3 + ‘. Using standard interpolation,

from (2.165) we deduce that ’q1 œ (q̄, +Œ) ÷q2 = q2(q1) > 2 such that

◊n Ô ◊ in L
q1(0, T ; L

q2(�)) . (2.166)

More precisely, q1 = q̄

–
, while q2 = 2q̄

(1≠–)q̄+2–
= 2–q1

(1≠–)–q1+2–
, where – œ (0, 1) is an

interpolation coe�cient. Being q̄ > 2, then q2 > 2, ’q1 œ (q̄, +Œ). Since we showed
that ◊n æ ◊ almost everywhere in � ◊ (0, T ), then it follows that (cf. Appendix
A.10)

◊n æ ◊ strongly in L
p1(0, T ; L

p2(�)) , p1 < q1 , p2 < q2. (2.167)

In particular,
◊n æ ◊ strongly in L

6+(0, T ; L
2+(�)) . (2.168)

We now show that {◊n‰n}n strongly converges to ◊‰ in L
2(0, T ; L

2(�)). Using
Young’s inequality, we obtain

Î◊n‰n ≠ ◊‰Î2
L2(0, T ; L2(�)) =

⁄
T

0
Î◊n‰n ≠ ◊n‰ + ◊n‰ ≠ ◊‰Î2

L2(�)dt

Æ 2
⁄

T

0
Î◊n‰n ≠ ◊n‰Î2

L2(�)dt + 2
⁄

T

0
Î◊n‰ ≠ ◊‰Î2

L2(�)dt . (2.169)

Let us consider the first term on the right hand side of (2.169). Hölder’s inequality
yields

⁄
T

0
Î◊n‰n ≠ ◊n‰Î2

L2(�)dt Æ Î◊nÎ
L6+ (0, T ; L2+ (�))Î‰n ≠ ‰Î

L3≠ (0, T ; L”(�)), (2.170)
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where ” < +Œ is such that 1
2+ + 1

”
= 1

2 . As for the second term on the right hand
side of (2.169), proceeding analogously, we obtain

⁄
T

0
Î◊n‰ ≠ ◊‰Î2

L2(�)dt Æ Î◊n ≠ ◊Î
L6+ (0, T ; L2+ (�))Î‰Î

L3≠ (0, T ; L”(�)). (2.171)

Combining (2.169) with (2.170) and (2.171), then using convergence properties
given by (2.152) and (2.168), we can conclude that

◊n‰n æ ◊‰ strongly in L
2(0, T ; L

2(�)) . (2.172)

At last, in order to deduce a convergence relation for {k(◊n)Ò 1
◊n

}n, note that

k(◊n)Ò 1
◊n

= ◊n

k(◊n)
◊n

Ò 1
◊n

= ◊nÒ
1

k0
2◊2

n

+ k1

(2 ≠ —)◊2≠—
n

2
,

where in the last inequality we used (2.48). Let us set 1
s1

© 1
p1

+ 1
2 and 1

s2
© 1

p2
+ 1

2 ,
respectively. Being p1 and p2 in (2.165) such that p1 < q1 and p2 < q2 with
q1, q2 > 2, then there exist p1, p2 satisfying 2 Æ p1 < q1 and 2 Æ p2 < q2. Thus,
s1, s2 Ø 1. Combining (2.140) and (2.139) with (2.165), we obtain

k(◊n)Ò 1
◊n

Ô k(◊)Ò1
◊

in L
s1(0, T ; L

s2(�)) , for some s1, s2 Ø 1 . (2.173)

2.4.2 Limit of the non-isothermal Cahn-Hilliard model

We assumed that, for every n œ N, the approximate solution (un, ‰n, ◊n) fulfils the
“strong” system of equations (2.1)-(2.2)-(2.3) (actually, its hypothetical approxi-
mation). Then, multiplying by suitable test functions and integrating by parts, it
readily follows that {(un, ‰n, ◊n)}n also complies with Definitions 2.2.1 and 2.2.2.
Then, we can see what happens as we let n ¬ Œ.

Limit of the Cahn-Hilliard system

We assumed that (2.1) and (2.3) are satisfied by the approximate solution (un, ‰n, ◊n),
’n œ N, namely,

(un)t = �‰n almost everywhere in � ◊ (0, T ) , (2.174)
‰n◊n = f(un) ≠ ⁄◊n ≠ �un almost everywhere in � ◊ (0, T ) , (2.175)

with the initial condition un(·, 0) = un, 0, the boundary conditions Ò‰n · ‹ = 0 and
Òun ·‹ = 0, where ‹ is the unit outer normal to ˆ�. Since we have the convergence
relations provided by (2.127) and by (2.128), taking the limit in (2.174), we directly
obtain (2.18).
As for equation (2.175), combining (2.131) with (2.129) and (2.127), it yields

f(un) ≠ ⁄◊n ≠ �un

ú
Ô f(u) ≠ ⁄◊ ≠ �u in L

Œ(0, T ; L
4
3 (�)) fl L

3(0, T ; L
2(�)) .
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2.4. Weak sequential stability

On the other hand, we have convergence relation given by (2.153). Hence, taking
the limit in (2.175), by comparison, we reduce to (2.19).
At last, we recover the initial and the boundary conditions given in Definition 2.2.1.
Observe that u(·, 0) = u0 directly follows from the convergence relation (2.130). As
for the boundary conditions, we appeal to the theory of traces in Sobolev spaces
(cf. Appendix A.12). Let T1 : H

2(�) æ H
1
2 (ˆ�) be a trace operator which maps a

function of class H
2(�) to the trace of the normal component of its gradient. Since

T1 is linear and continuous, from (2.127) and (2.128) we deduce that

T1‰n Ô T1‰ and T1un Ô T1u in H
1
2 (ˆ�) , almost everywhere in (0, T ) .

It follows that the boundary conditions (1.13) and (1.14) are recovered at least in
the sense of traces.

Limit of the balance of entropy equation

We assumed that (2.11) is satisfied by the approximate solution (un, ‰n, ◊n), ’n œ
N, then we can test it by ’ œ CŒ(�̄ ◊ [0, T ]) such that ’ Ø 0, ’(·, T ) = 0. Then,
integrating by parts, we obtain

⁄
T

0

⁄

�
�(◊n)’t dxdt +

⁄
T

0

⁄

�
Ò

1
‰

2
n

2 + ⁄‰n

2
· Ò’ dxdt +

⁄
T

0

⁄

�

k(◊n)
◊n

Ò 1
◊n

· Ò’ dxdt

= ≠
⁄

T

0

⁄

�
|Ò‰n|2’ dxdt ≠

⁄
T

0

⁄

�
k(◊n)

---Ò
1
◊n

---
2
’ dxdt ≠

⁄

�
�(◊n(·, 0))’(·, 0) dx .

(2.176)

Our aim is taking the supremum limit in (2.176). Firstly, recall that �(◊n) =
cV ◊n, cV > 0, and that k(◊n)

◊n
Ò 1

◊n
= Ò k0

2◊2 + Ò k1
(2≠—)◊2≠— , k0, k1 > 0, as shown in

(2.48). Hence, using convergence relations (2.129), (2.155), (2.128), (2.140) and
(2.139), the first row of (2.176) passes to the desired limit. Indeed, we recover the
first row of (2.20) not only as a supremum limit, but as a true limit. As for the
first two terms in the second row of (2.176), we apply a useful lower semicontinuity
result due to A.D. Io�e, that is known as Io�e’s Theorem - see Theorem A.11.1 in
Appendix A.11. Referring to the notation used in Theorem A.11.1, Q © �◊(0, T ),
while f : Q ◊R+ ◊R3 æ [0, +Œ] is such that (x, t) ◊ w ◊ v ‘æ w|v|2. Observe that
f is measurable and non-negative. Moreover, f((x, t), w, ·) is lower semi-continuous
on R+ ◊ R3

, ’(x, t) œ Q, and f((x, t), ·, ·) is convex on R3, ’((x, t), w) œ Q ◊ R+.
Let us now consider the first two terms in the second row of (2.176) separately.
In particular, referring to the first term, wn © ’ and vn © Ò‰n, ’n œ N. The
almost everywhere convergence of {wn}n in Q is then obvious, and the weak one
of {Ò‰n}n to Ò‰ in L

1(Q) easily follows from (2.128). Thus, we can conclude that

lim inf
næ+Œ

⁄
T

0

⁄

�
|Ò‰n|2’ dxdt Ø

⁄
T

0

⁄

�
|Ò‰|2’ dxdt . (2.177)

As for the second term, wn © ’k(◊n) and vn © Ò 1
◊n

, ’n œ N. Since we showed at
the beginning of Section 2.4 that ◊n æ ◊ almost everywhere in � ◊ (0, T ), then
k(◊n) æ k(◊) almost everywhere in �◊ (0, T ). That implies the almost everywhere
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convergence of {’k(◊n)}n in Q. On the other hand, convergence relation (2.138)
gives us the weak convergence of {Ò 1

◊n
}n to Ò1

◊
in L

1(Q). Then, it follows that

lim inf
næ+Œ

⁄
T

0

⁄

�
k(◊n)

---Ò
1
◊n

---
2
’ dxdt Ø

⁄
T

0

⁄

�
k(◊)

---Ò
1
◊

---
2
’ dxdt . (2.178)

At last, assuming that ◊n(·, 0) converges properly to ◊0, the last term in the second
row of (2.176) passes to the desired supremum limit and we recover (2.20). Observe
that the inequality sign in (2.20) is due to the application of Io�e’s Theorem, and
in particular to relations (2.177) and (2.178).

Limit of the “heat” equation

In order to pass to the limit in the “heat” equation, we need the additional infor-
mation for {◊n}n holding for 5

3 < — < 2, as already stated. To this aim, we assume
5
3 < — < 2.
Since the approximate solutions (un, ‰n, ◊n) fulfils (2.3) (actually, its hypothetical
approximation) strongly, ’n œ N, then we can test it by › œ CŒ(�̄ ◊ [0, T ]) and,
integrating by parts, we obtain

⁄
T

0

⁄

�
Q(◊n)›t dx +

⁄

�
Q(◊n(·, 0))›(·, 0) dx ≠

⁄

�
Q(◊n(·, T ))›(·, T ) dx +

≠
⁄

T

0

⁄

�
◊n(‰n + ⁄)�‰n› dxdt +

⁄
T

0

⁄

�
k(◊n)Ò 1

◊n

· Ò› dxdt = 0 . (2.179)

Taking the limit in (2.179), using convergence relations (2.165) and (2.164), the
first row of (2.179) passes to the desired limit, i.e., we recover the first row of
(2.19). Next, we consider the second row of (2.179), which is that requiring the
additional regularity provided by (2.118) and (2.120). Indeed, in order to pass to
the limit in the first term we use the strong convergences provided by (2.172) and
(2.167) combined with the weak one by (2.128). As for the second term, convergence
relation (2.173) allows us to conclude. Thus, we recover (2.19).

2.5 An open problem

In this section we try to weaken a hypothesis made on the double-well potential
(2.14). In particular, we would like to generalize Theorems 2.2.1 and 2.2.2 to fourth
order polynomial potentials such as (1.6). We will see that, in this case, some a
priori bounds obtained in Subsection 2.3.2 do not hold true anymore. However, we
will propose a strategy to overcome this problem.

Consider a polynomial double-well potential of the following form

F (u) = a1|u|fl ≠ a2u
2 ≠ a3, fl œ

#
3, 4] , (2.180)

where a1, a2 > 0 . Notice that the expression (2.180) includes fourth order po-
tentials such as (1.6), or more generally (1.8). In this case, the derivative of F

reads
f(u) = a1fl sgn(u)|u|fl≠1 ≠ 2a2u , fl œ

#
3, 4] , (2.181)
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2.5. An open problem

where sgn represents the sign function and a1, a2 > 0 .
If we assume a double-well potential of the form (2.180), instead of (2.14), then
(2.44) does not hold true anymore. As already notice in Remark 2.3.1, in this case,
the Gagliardo-Nirenberg interpolation inequality yields the L

p norm of the Lapla-
cian of u with p >

4
3 for fl >

7
2 on the right hand side (2.44). As a consequence,

we obtain Î‰
2
◊ÎLr(�) with r > 1 on the right hand side of (2.46). Thus, we can-

not proceed anymore as done in Subsection 2.3.2, i.e., we cannot apply Gronwall’s
Lemma in order to close the estimates. This suggests that we should adopt di�erent
techniques to recover the estimates collected in Subsection 2.3.2. In particular, we
should provide an alternative method to control the last term on the right hand
side of (2.39), namely cV

s
� f

Õ(u)ut‰ dx . To this aim, we can try to proceed as
follows.

From (2.181) we deduce that f
Õ(u) = a1fl(fl≠1)|u|fl≠2 ≠2a2 , fl œ

#
3, 4] , a1, a2 >

0 . It follows that
⁄

�
f

Õ(u)ut‰ dx Æ cfl

⁄

�
(|u|fl≠2 + 1)|ut‰| dx

Æ cfl(Î|u|fl≠2
‰ÎL2(�) + Î‰ÎL2(�))ÎutÎL2(�)

Æ cfl(Î|u|fl≠2ÎL3(�)Î‰ÎL6(�) + Î‰ÎL2(�))ÎutÎL2(�)

Æ cfl(ÎuÎfl≠2
L3(fl≠2)(�) + c)Î‰ÎL6(�)ÎutÎL2(�)

where we used Hölder’s inequality twice and cfl denotes a positive constant depend-
ing on fl œ

#
3, 4] which may vary from line to line. Notice that 3(fl ≠ 2) œ [3, 6] for

fl œ
#
3, 4]. Thus, using (2.28) together with Young’s inequality, we obtain

cV

⁄

�
f

Õ(u)ut‰ dx Æ cV

2 ÎutÎ2
L2(�) + cflÎ‰Î2

L6(�) ,

whence,
cV

⁄

�
f

Õ(u)ut‰ dx Æ cV

2 ÎutÎ2
L2(�) + cflÎ‰Î2

H1(�) , (2.182)

due to the continuous embedding H
1(�) Òæ L

6(�).
Observe that we can move the first term on the right hand side of (2.182) to the
left hand side of (2.39). As for the second one, we should find a way to control it.
First of all, we would like to estimate the average of ‰ over �, i.e. È‰Í, which is
given by (2.2), namely È‰Í = Èf(u)

◊
Í ≠ È�u

◊
Í ≠ 1. Integrating by parts, using the

boundary condition (2.6) and Hölder’s inequality, we obtain

|È‰Í| Æ Îf(u)ÎL2(�)
...

1
◊

...
L2(�)

+ cÎÒuÎL2(�)
...Ò1

◊

...
L2(�)

+ c ,

where f is given by (2.181). Notice that, for fl œ
#
3, 4], 6

fl≠1 œ [2, 3] in (2.29). Thus,
using (2.27) and (2.29), we deduce

|È‰Í| Æ cfl

1...
1
◊

...
L2(�)

+
...Ò1

◊

...
L2(�)

+ 1
2

.
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The Poincaré-Wirtinger inequality then yields

Î‰ÎL2(�) Æ cfl

1
ÎÒ‰ÎL2(�) +

...
1
◊

...
L2(�)

+
...Ò1

◊

...
L2(�)

+ 1
2

,

whence

Î‰ÎH1(�) Æ cfl

1
ÎÒ‰ÎL2(�) +

...
1
◊

...
L2(�)

+
...Ò1

◊

...
L2(�)

+ 1
2

. (2.183)

In order to recover the estimates collected in Subsection 2.3.2, we should now
square (2.183), insert it into (2.182), combine what we obtain together with (2.39),
and then integrate with respect to time. Observe that this procedure fails because
the so-called energy and entropy estimates do not provide any upper bound for
Î1

◊
ÎL2(0, T ; L2(�)) (see Subsection 2.3.1). However, if we were able to prove that the

spatial average of 1
◊
, i.e. È1

◊
Í, is somehow bounded by the L

2(�) norm of Ò1
◊

and by
that of ◊, then the Poincaré-Wirtinger inequality together with (2.32) and (2.24)
would allow us to conclude that Î1

◊
ÎL2(0, T ; L2(�)) Æ c. Thus, we would recover the

estimates collected in Subsection 2.3.2. Then, we could proceed analogously as done
in the previous sections. As a consequence, we would be able generalize Theorems
2.2.1 and 2.2.2 to fourth order polynomial potentials given by (2.180).

The problem is that we do not know how to obtain an estimate for È1
◊
Í depending

on L
2(�) norm of Ò1

◊
and on that of ◊.

For the sake of simplicity, let us ignore the dependence on the time variable t œ
(0, T ). In one-spatial dimension, i.e., for � © (a, b) µ R, the following result holds
true.

Proposition 2.5.1. Let v œ W
1,1(a, b) such that v > 0 almost everywhere in (a, b).

Let È · Í denote the average over (a, b) and let

M := ÈvÍ > 0 , R :=
e1

v

f
> 0 and G :=

⁄
b

a

|vÕ(x)| dx ,

where v
Õ is the spatial derivative of v. Then,

M Æ G + 1
R

.

Proof. For the sake of contradiction, suppose M > G+ 1
R

. Since v œ W
1,1(a, b) can

be represented by a continuous function, then let › œ [a, b] such that v(›) = M .
Thus, for every y œ (a, b), it holds

v(y) = v(›) +
⁄

y

›

v
Õ(x) dx Ø M ≠

⁄
x

›

|vÕ(x)| dx = M ≠ G ,

where M ≠ G > 0 because M > G + 1
R

. Then, we can deduce that

1
v(y) Æ 1

M ≠ G
, ’y œ [a, b] ,
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whence
R Æ 1

M ≠ G
.

It follows that
M Æ G + 1

R
.

Since we have a contradiction, the statement follows.

Setting v © 1
◊
, since ◊ > 0 almost everywhere in � © (a, b) (see Section 2.4), then

Proposition 2.5.1 together with (2.32) yield the desired estimate for È1
◊
Í.

If we were able to generalize Proposition 2.5.1 to strictly positive function v belong-
ing to W

1,1(�), where � is a regular subset of Rn, n œ N, then we would be able
to conclude and thus generalize Theorems 2.2.1 and 2.2.2 to fourth order polyno-
mial potentials given by (2.180). However, the generalization of Proposition 2.5.1
to higher spatial dimension is not immediate and it may be particularly technical.
Indeed, for � µ Rn

, n > 1, v œ W
1,1(�) does not imply the existence of a con-

tinuous representative and the proof may involve the use of the so-called Lebesgue
points (cf. Appendix A.4-A.5).

2.6 A tentative approximation of the “strong” system

We already observed that the system of equations (2.1)–(2.3) is rather complex
and, as a consequence, the related approximation could be particularly long and
technical. For all these reasons, in the previous sections, we decided to skip this
argument and rather proceed formally. In this section we give some highlights re-
garding a possible approximation of the “strong” system (2.1)–(2.3) that one could
try to develop.

Recall that, in order to make the procedure carried out in Section 2.3 fully
rigorous, one should rather consider a proper regularization or approximation of
the “strong” system and prove that it admits at least one solution being su�ciently
smooth in order to comply with the estimates. To this aim, we propose as a possible
approximation of (2.1)–(2.3) the following system of equations

ut = m�‰ + ‡
|�‰|p≠2�‰

◊
≠ “ sgn(‰)|‰|q , (2.184)

‰◊ = ≠–�u ≠ ⁄◊ + f(u) , (2.185)

(Q(◊))t + m◊�‰(‰ + ⁄) + div
1
k(◊)Ò1

◊

2
+ Á◊

s ≠ ”
1
◊r

= 0 , (2.186)

where sgn denotes the sign function, for (small) ‡, “, Á, ” œ (0, 1) and for properly
fixed (large) p Ø 3, q, s, r Ø 1, possibly depending on each other. The system of
equations (2.184)-(2.186) may be endowed with the same boundary conditions as
before, and properly regularized initial conditions. In particular, we expect that ◊0
may be truncated both from below and above, where we intend the truncation to
be removed passing to the limit.
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First of all, as done for the equation (2.3) in Section 2.1, we can multiply (2.186)
by 1

◊
. Thus, using the chain rule, we obtain an equivalent formulation of (2.186),

which is given by

(�(◊))t + m�
1

‰
2

2 + ⁄‰

2
+ div

1
k(◊)

◊
Ò1

◊

2
+

≠ m|Ò‰|2 ≠ k(◊)
---Ò

1
◊

---
2

+ Á◊
s≠1 ≠ ”

1
◊r+1 = 0. (2.187)

Observe that, due to the introduction of the regularization terms, the energy
and the entropy estimates cannot be recovered separately, as done in Subsection
2.3.1. However, one could try to collect them together with the “key” estimates
obtained in Subsection 2.3.2. In other words, one could first multiply (2.184) and
(2.185) by ◊‰ and by ut, respectively, then take the sum of them, obtaining a
balance of energy equation for the approximate problem. On the other hand, one
could multiply (2.187) by ≠

!
‰

2

2 + ⁄‰
"

≠
!

k0
2◊2 + k1

(2≠—)◊2≠—

"
, use (2.37), then sum

the result to the di�erence between the balance of energy equation and (2.187).
A single equation is thus obtained and one could try to recover the estimates col-
lected in Section 2.3 by controlling the non-positive terms on the left hand side, or
equivalently, the positive ones on the right hand side. Furthermore, the recovered
estimates should be uniform with respect to the parameters ‡, “, Á, ”.

The motivations for the introduction of the regularization terms in system
(2.184)-(2.186), thus in (2.187), are the following. The term ‡

|�‰|p≠2�‰

◊
in (2.184)

could be helpful to collect further regularity for �‰, hence for ‰. In particular, it is
rescaled by ◊ so that ◊ disappears when we multiply (2.184) by ◊‰ in order to ob-
tain an “approximated” balance of energy equation. Also ≠“ sgn(‰)|‰|q in (2.184)
is introduced in order to improve our estimates for ‰. As for the regularization
terms Á◊

s and ≠”
1
◊r in (2.186), thus Á◊

s≠1 and ≠”
1

◊r+1 in (2.187), they could be
useful in order to obtain higher spatial regularity for ◊ and 1

◊
, respectively.

In particular, the solutions ‰ and ◊ to the approximated system (2.184)-(2.186)
should be regular enough so that (2.186) and (2.187) are equivalent, i.e., both are
satisfied almost everywhere in � ◊ (0, T ). Indeed, as observed at the beginning of
Subsection 2.4.1, in order to conclude about the existence of weak solutions (see
Def. 2.2.2) as well as about that of entropy solutions (see Def. 2.2.1) to the system
(2.1)- (2.3), we need more regularity for ◊.

One could provide the proof of the existence of solutions to the approximate sys-
tem (2.184)-(2.186) by means of a fixed point argument of Schauder type (cf. [40]).
In particular, one could fix ◊ in (2.184)-(2.185) and then prove the existence of
unique solutions u and ‰ by some more or less standard techniques such as a
time discretization argument or a Faedo–Galerkin approximation (cf. [55, §7.3]).
Then, once obtained u and ‰, one could prove the existence of a unique solution
◊ to (2.186) by standard techniques. Notice that, due to the structure of equation
(2.186), we expect ◊ to be positive almost everywhere in � ◊ (0, T ). Finally, ap-
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plying the Schauder fixed point theorem, one could conclude about the existence
of at least one triple (u, ‰, ◊) satisfying the approximate system (2.184)-(2.186)
almost everywhere in � ◊ (0, T ). At least in principle, the regularity class of the
approximate solution (u, ‰, ◊) obtained by the application of the Schauder fixed
point theorem could be not su�cient in order for the estimates collected in Section
2.3 to be fully rigorous. However, these regularities would be just the outcome of
the fixed point argument, and, hence, they could not be at all optimal. Further
regularity of the approximate solution might be standardly proved by working sep-
arately on the equations of the approximate system and performing some bootstrap
argument. This procedure may require a notable amount of technical work, as men-
tioned above, including the need for regularizing the initial data.

At last, observe that the approximate solution to (2.184)-(2.186) provided by
the fixed point argument may depend on the parameters ‡, “, Á, ”. On the other
hand, the a priori bounds performed in Section 2.3 should be adapted to the ap-
proximate solution so to be uniform with respect to ‡, “, Á, ”. Thus, if we consider
any sequences of parameters {‡n}n, {“n}n, {Án}n, {”n}n µ (0, 1) converging to zero
as we let n ¬ Œ and we denote by {(un, ‰n, ◊n)}n the corresponding sequence of
approximate solutions provided by the fixed point argument, then the estimates
obtained in Section 2.3 are uniform with respect to n œ N. As a consequence, they
are preserved to the limit as we let n ¬ Œ, i.e., they are satisfied by the limit
(u, ‰, ◊). Notice that, since the parameters ‡, “, Á, ” in (2.184)-(2.186) possibly de-
pend on each other, the sequences {‡n}n, {“n}n, {Án}n, {”n}n may not pass to the
limit in a independent way.
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Conclusions

In this work we proved the local-in-time existence for the initial-boundary value
problem associated to the entropy formulation and, in a subcase, also to the weak
one of a non-isothermal Cahn-Hilliard model proposed by Miranville and Schim-
perna.
In Chapter 1, we first gave an overview of Cahn-Hilliard models, which describe
phase-separation processes in two-phase systems. We presented the phenomeno-
logical derivation of the standard isothermal Cahn-Hilliard equation, as originally
deduced by Cahn and Hilliard. Afterwards, we introduced Gurtin’s two-scale ap-
proach which is based on a new balance law for microforces. This led us to some
generalizations of Cahn-Hilliard equation.
Since also thermal e�ects should be taken into account when studying realistic
physical systems, then we focused on some non-isothermal Cahn-Hilliard mod-
els. In particular, we compared and outlined the main di�erences between Alt
and Paw�low’s model and Miranville and Schimperna’s one. We saw that Alt and
Paw�low deduced their model of non-isothermal phase separation from constituive
relations for the mass and heat fluxes and the chemical potential and that the
thermodynamic consistency is shown a posteriori. On the other hand, Miranville
and Schimperna adopted Gurtin’s approach and used the two fundamental laws
of Thermodynamics as a starting point to derive their model. Furthermore, they
did not made any a priori specification on the mass and heat fluxes and on the
chemical potential, deducing a posteriori the admissible expressions for the phys-
ical parameters. Therefore, since this procedure seems to allow us to describe the
most general class of free energies and of chemical potentials, we proposed their
model as an extension to Alt and Paw�low’s one to non-isotropic materials and to
systems that are far from the equilibrium.
At least to our knowledge, a result regarding the existence of (weak) solutions to
Miranville and Schimperna’s non-isothermal Cahn-Hilliard model was still lacking.
To this end, in Chapter 2, we made some working assumptions on the Ginzburg-
Landau free energy and on the heat flux. Then, we looked for some formal a priori
estimates holding for hypothetical solutions of the strong formulation of the model,
more precisely, to a proper regularization or approximation of it. By compactness
argument, we showed that at least a subsequence of approximate solutions con-
verges in a suitable way to an entropy solution to the initial-boundary value prob-
lem and, when possible, also to a weak one. This procedure thus led us to obtain
two theorems about the existence of entropy and weak solutions to Miranville and
Schimperna’s non-isothermal Cahn-Hilliard model, respectively. We also noticed
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that if a preliminary result could be extended to the three-dimensional case, then
our theorems could be generalized to a wider class of polynomial double-well po-
tentials. At last, we gave some highlights regarding a possible approximation of the
“strong” system that one could try to develop.

We now recall some already mentioned open problems and we present further pos-
sible extensions to this work.
First of all, we still have to develop the details of the approximation of the strong
formulation of the model. Here, we decided to skip this part and rather give only
the highlights of the procedure because it could be particularly complex, long and
technical.
Furthermore, we observed that in order to generalize our local-in-time existence
theorems to fourth order polynomial potentials we should extend a preliminary
result to the three-dimensional case. This is one of our first future objectives.
Another future objective could be that of recovering the Fourier’s law for the heat
flux at least for high temperatures. To this aim, we should develop another strategy
to recover suitable a priori estimates.
A physically reasonable change regarding the homogeneous part of a Ginzburg-
Landau free energy could be done. In particular, one could adopt a temperature
coupling term which is quadratic in the order parameter, instead of linear. As we
saw at the end of Chapter 1, that would lead to some changes in the heat equation
and thus to some mathematical di�culties in looking for suitable a priori estimates.
Other possible extensions may go in the direction of introducing an anisotropy co-
e�cient in the inhomogeneous (or gradient) part of Ginzburg-Landau free energy.
Otherwise, we could try to extend our results to logarithmic potentials and thus
appeal to the theory of monotone operators, in order to define a proper concept of
solution.
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Appendix A
Mathematical Tools

In this appendix we collect some mathematical tools used throughout the thesis.

A.1 Solution to thermodynamic inequalities

Let F be a smooth function from Rn ◊ Rm into Rm, n, m œ N, n, m Ø 1.
Our aim is to find a general solution of the inequality

F (X, Y ) · Y Æ 0 , ’X œ Rn
, ’Y œ Rm

. (A.1)
In the following, we present a resolution strategy that is given in [31, Appendix B].
The variable X can be considered as a parameter and we may, without loss of
generality, suppress it when convenient.
Suppose that (A.1) holds true, for ⁄ > 0, F (⁄Y ) ·⁄Y Æ 0 and hence F (⁄Y ) ·Y Æ 0.
Letting ⁄ æ 0, we obtain F (0) · Y Æ 0 , ’Y œ Rm, so that F (0) = 0. It follows that

F (Y ) =
1 ⁄ 1

0
ÒF (sY ) ds

2
Y , ’Y œ Rm

.

Setting ≠A(Y ) ©
s 1

0 ÒF (sY ) ds, we obtain F (Y ) = ≠A(Y )Y, ’Y œ Rm.
The general solution F of (A.1) is therefore

F (X, Y ) = ≠A(X, Y )Y ,

where A(X, Y ), for each (X, Y ) œ Rn ◊ Rm, is a linear transformation from Rm

into Rm consistent with the inequality
Y · A(X, Y )Y Ø 0 . (A.2)

Because of the dependence of A(X, Y ) on Y , the inequality (A.2) is weaker than
positive definiteness for A(X, Y ). However, when F is quasilinear, i.e., F (X, Y ) is
linear in Y for each X, then

F (X, Y ) = ≠A(X)Y , ’(X, Y ) œ Rn ◊ Rm
,

where A(X) is positive semi-definite because of (A.2). More generally,
F (X, Y ) = ≠A(X)Y ≠ o(|Y |) , as Y æ 0 , ’X œ Rn

where A(X) is positive semi-definite.
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A.2 Young’s inequalities

Lemma A.2.1 (Young’s inequality). Let 1 < p, q < Œ such that 1
p

+ 1
q

= 1. Then,

ab Æ a
p

p
+ b

q

q
, a, b > 0 .

Proof. Write ab = e
ln(ab). The statement directly follows from the convexity of the

map x ‘æ e
x.

Corollary A.2.2 (Generalized Young’s inequality). Let 1 < p, q < Œ such that
1
p

+ 1
q

= 1. Then,
ab Æ ‘a

p + c‘b
q

, a, b > 0 , ‘ > 0 ,

for c‘ = (‘p)≠ q
p q

≠1.

Proof. Write ab = ((‘p)
1
p a)((‘p)≠ 1

p b) and apply Young’s inequality.

A.3 Gronwall’s lemma

Lemma A.3.1 (Gronwall’s Lemma). Let I µ R be an interval. Let — and v be
real-valued functions defined on I. Assume that — and v are continuous and that
— Ø 0. If there exists – œ R such that

v(·) Æ – +
⁄

·

a

—(t)v(t) dt , ’· œ I , · Ø a ,

then
v(·) Æ –e

s ·

a
—(t) dt

, ’· œ I , · Ø a .

Proof. The proof can be found in [60, §1.3].

A.4 Lebesgue di�erentiation theorem

In this section, we show that a summable function is “approximately continuous” at
almost every point. More precisely, for almost every point, the value of an summable
function is the limit of infinitesimal averages taken about the point.

Let L
1
loc(Rn) denote the space of locally summable functions on Rn, n œ N.

Definition A.4.1. Let v œ L
1
loc(Rn), n œ N. A point x œ Rn is a Lebesgue point

of v if
lim

ræ0+

1
|B(x, r)|

⁄

B(x,r)
|v(y) ≠ v(x)|dy = 0 ,

where is a ball centered at x with radius r > 0, and |B(x, r)| is its Lebesgue
measure.
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A.5. Sobolev spaces

The Lebesgue points of a locally summable function are thus points where
the function does not oscillate too much, in an average sense. If the function is
continuous, then every point is a Lebesgue point. On the contrary, for a locally
summable function, it is far from obvious that there exist Lebesgue points. However,
the following remarkable theorem shows that they actually exist.

Theorem A.4.1 (Lebesgue di�erentiation theorem). If v œ L
1
loc(Rn), n œ N, then

almost every x œ Rn is a Lebesgue point of v.

Proof. The proof can be found in [57, §7.6].

Observe that Theorem A.4.1 is an analogue, and a generalization, of the funda-
mental theorem of calculus in higher dimensions.

A.5 Sobolev spaces

The aim of this section is to briefly recall Sobolev spaces. For more details, see [8, §8-
9]. Notice that we suppose the reader to be familiar with L

p spaces, their norms,
their dual spaces and their main properties, such as reflexivity for 1 Æ p < Œ and
separability for 1 < p < Œ. Otherwise, we refer the reader to [8, §3] for the general
theory regarding reflexive and separable spaces, and to [8, §4] for L

p spaces and
their properties.

Let � be an open subset of Rn
, n œ N. Let CŒ

c (�) denote the space of infinitely
di�erentiable functions with compact support in �.

Definition A.5.1. Suppose v, w œ L
1
loc(�), and – is a multi-index. We say that

w is the –
th-weak partial derivative of u, written D

–
v = w, if

⁄

�
vD

–
„ dx = (≠1)|–|

⁄

�
w„ dx

for all test functions „ œ CŒ
c (�)

Once recalled the notion of weak partial derivative, we can introduce the definition
of Sobolev space.
Fix 1 Æ p Æ Œ and let k be a nonnegative integer.

Definition A.5.2. The Sobolev space W
k,p(�) consists of all locally summable

functions v : � æ R such that for each multiindex – with |–| Æ k, D
–
v exists in

the weak sense and belongs to L
p(�).

If p = 2, we usually write H
k(�) © W

k,2(�).

Definition A.5.3. If v œ W
k,p(�), we define its norm to be

ÎvÎW k,p(�) :=
Iq

|–|Æk
ÎD

–
vÎLp(�) , 1 Æ p < Œ ,

q
|–|Æk

ess sup� |D–
v| , p = Œ .
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Theorem A.5.1. For each k nonnegative integer, the Sobolev space W
k,p(�) is a

Banach space for every 1 Æ p Æ Œ. W
k,p(�) is reflexive for 1 Æ p < Œ and it is

separable for 1 < p < Œ.

Proof. The proof can be found in [8, §9.1].

Consider the case k = 1 and n = 1, i.e., � © (a, b) µ R. The functions in
W

1,p(a, b) are roughly speaking the primitives of the L
p(a, b) functions. More pre-

cisely, we have the following:

Theorem A.5.2. Let v œ W
1,p(a, b) with 1 Æ p Æ Œ, then there exists a function

ṽ œ C([a, b]) such that v = ṽ almost everywhere in (a, b) and

ṽ(x) ≠ ṽ(z) =
⁄

x

z

v
Õ(y) dy , ’x, z œ [a, b] ,

where v
Õ is the first derivative of v.

Proof. The proof can be found in [8, §8.2].

Let us emphasize the content of Theorem A.5.2. It asserts that every function
v œ W

1,p(a, b) admits one (and only one) continuous representative on (a, b), i.e.,
there exists a continuous function on (a, b) that belongs to the equivalence class of
v (v ≥ ṽ if v = ṽ almost everywhere). When it is useful v can be replaced by its
continuous representative. In order to simplify the notation we also write v for its
continuous representative. We finally point out that the property “v has a contin-
uous representative” is not the same as “v is continuous almost everywhere”.
Furthermore, when p = 1 and (a, b) is bounded, the functions of W

1,p(a, b) coincide
with the absolutely continuous functions AC([a, b]). Indeed, they are also charac-
terized by the property: ’‘ > 0 ÷” > 0 such that for every finite sequence of disjoint
intervals (aj , bj) µ (a, b) such that

q
j

|bj ≠ aj | < ”, we have
q

j
|v(bj) ≠ v(aj)| < ‘.

Next, we present some other sort of Sobolev spaces, which comprise functions
mapping time into Banach spaces. These are essential in the construction of weak
solutions to evolution equations, which are partial di�erential equations explicitly
depending on both time and spatial variables. Before defining them, we should first
of all introduce the measure and integration theory for mappings taking value in a
Banach space, i.e. the so-called Bochner’s integral. However, since the main results
in Lebesgue theory of integration can be adapted to the case of Bochner’s integral
at least when the target space X is separable, we decided to skip this part and we
refer the reader to [66, V.5], [38, §8.1] and [22, Appendix E.5].

Let [0, T ] µ R be a time interval and let X denote a Banach space, with norm
Î·ÎX .

Definition A.5.4. The space L
p(0, T ; X) consists of all (strongly) measurable

functions v : [0, T ] æ X with

ÎvÎLp(0, T ; X) :=
1 ⁄

T

0
Îv(t)Îp

X
dt

2 1
p

< Œ
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A.5. Sobolev spaces

for 1 Æ p < Œ, and

ÎvÎLŒ(0, T ; X) := ess sup
0ÆtÆT

Îv(t)ÎX < Œ .

Proposition A.5.3. L
p(0, T ; X) is a Banach space.

If X is separable, then L
p(0, T ; X) is separable for any 1 Æ p < Œ.

If X is reflexive, then L
p(0, T ; X) is reflexive for any 1 < p < Œ. In particular,

the dual space is given by (Lp(0, T ; X))Õ © L
p

Õ(0, T ; X
Õ), where p

Õ is the conjugate
exponent to p and X

Õ is the dual space of X.
If X is a Hilbert space, then L

2(0, T ; X) is a Hilbert space.

Proof. The proof can be found in [38, §8.2].

Notice that, using the integration theory for Banach-valued functions, it can be
proven that

L
p(0, T ; L

p(�)) ≥= L
p(� ◊ (0, T )) , 1 Æ p < Œ . (A.3)

This result is due to the separability of L
p spaces for 1 Æ p < Œ. Indeed, for p = Œ,

L
Œ(0, T ; L

Œ(�)) ( L
Œ(� ◊ (0, T )) .

Definition A.5.5. The space C([0, T ]; X) comprises all continuous functions v :
[0, T ] æ X with

ÎvÎC([0, T ]; X) := max
0ÆtÆT

Îv(t)ÎX < Œ .

By standard techniques, the following proposition can be proven.

Proposition A.5.4. C([0, T ]; X) is a Banach space.

As we weaken the definition of spatial partial derivative, we can do the same
for the time derivative.

Definition A.5.6. Let v œ L
1(0, T ; X). We say w œ L

1(0, T ; X) is the weak
derivative of v, written vt = w, provided

⁄
T

0

d„

dt
(t)v(t) dt = ≠

⁄
T

0
„(t)w(t) dt ,

for all scalar test functions „ œ CŒ
c (0, T ).

Definition A.5.7. The Sobolev space W
1,p(0, T ; X) consists of all functions v œ

L
p(0, T ; X) such that ut exists in the weak sense and belongs to L

p(0, T ; X).
Furthermore,

ÎvÎW 1,p(0, T ; X) :=
I

ÎvÎLp(0, T ; X) + ÎvtÎLp(0, T ; X) , 1 Æ p < Œ ,

ess sup0ÆtÆŒ(Îv(t)Î + Îvt(t)Î) , p = Œ .

If p = 2, we usually write H
k(0, T ; X) © W

k,2(0, T ; X).
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A.6 Inequalities involving Lp
and Sobolev norms

In this section, we recall some useful inequality usually used to deduce properties
of some functions.

Theorem A.6.1 (Hölder’s inequality). Let 1 Æ p Æ Œ. Assume that v œ L
p and

w œ L
q, where q is the conjugate exponent to p, i.e., it satisfies 1

p
+ 1

q
= 1. Then,

vw œ L
1 and

ÎvwÎL1 Æ ÎvÎLpÎwÎLq .

Proof. The proof can be found in [8, §4.2].

Direct consequences of Hölder’s inequality are the following extensions:

Corollary A.6.2. Assume that v1, v2, ..., vk are functions such that vi œ L
pi, 1 Æ

i Æ k with 1
p1

+ 1
p2

+ ... + 1
pk

= 1
p

Æ 1 . Then, the product v = v1v2...vk belongs to
L

p and
ÎvÎLp Æ Îv1ÎLp1 Îv2ÎLp2 . . . ÎvkÎL

pk .

Corollary A.6.3 (Interpolation inequality). If v œ L
p fl L

q with 1 Æ p Æ q Æ Œ,
then v œ L

r for all r such that p Æ r Æ q and the interpolation inequality holds:

ÎvÎLr Æ ÎvÎ–

LpÎvÎ1≠–

Lq ,

where 1
r

= –

p
+ 1≠–

q
, 0 Æ – Æ 1.

Theorem A.6.4 (Poincaré-Wirtinger’s inequality). Let � be a bounded, connected,
Lipschitz, open subset of Rn

, n œ N. Assume 1 Æ p Æ Œ. Then there exists a
constant c, depending only on n, p and �, such that

Îv ≠ ÈvÍÎLp(�) Æ cÎÒvÎLp(�) , where ÈvÍ © 1
|�|

⁄

�
v dx ,

for each function v œ W
1,p(�).

Proof. The proof can be found in [22, §5.8].

The following theorem is due to L. Nirenberg [50] and to E. Gagliardo [25].

Theorem A.6.5 (Gagliardo-Nirenberg inequality). Let 1 Æ q, r Æ Œ, let k be a
natural number and let v œ L

q(Rn) fl W
k,r(Rn) , n œ N. Suppose that a real number

– and a natural number j are such that

1
p

= j

n
+

11
r

≠ k

n

2
– + 1 ≠ –

q
and j

k
Æ – Æ 1 .

Then, there exists a constant c depending only on k, n, j, q, r and – such that

ÎD
j
uÎLp(�) Æ cÎD

k
uÎ–

Lr(�)ÎuÎ1≠–

Lq(�) , (A.4)

with the following exceptional cases:
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A.7. Continuous embedding theorems

1. If j = 0, kr < n and q = Œ, then it is necessary to make the additional
assumption that either v tends to zero at infinity or that v lies in L

s for some
finite s > 0.

2. If 1 < r < Œ and k ≠ j ≠ n

r
is a non-negative integer, then it is necessary to

assume also that – ”= 1.

For a bounded, connected, Lipschitz, open subset � µ Rn
, n œ N, and v œ L

q(�) fl
W

k,r(�), the result holds with the same hypotheses as above and reads

ÎD
j
uÎLp(�) Æ c1ÎD

k
uÎ–

Lr(�)ÎuÎ1≠–

Lq(�) + c2ÎuÎLs(�) ,

where c1, c2 are constants depending only on k, n, j, q, r, –, �, and s œ [1, q] is arbi-
trary.

Proof. A sketch of the proof can be found in [50] and in [38, §12.5]

A.7 Continuous embedding theorems

The embedding characteristics of Sobolev spaces are essential in their use in anal-
ysis, especially in the study of di�erential and integral operators. The most impor-
tant imbedding results for Sobolev spaces are often gathered together into a single
theorem, that is known as the Sobolev embedding theorem. On the other hand,
they are of several di�erent types and can require di�erent methods of proof. The
core results are due to Sobolev [64, §1.8], but our statement (Theorem A.7.1) also
includes refinements due to others, in particular Morrey [49] and Gagliardo [24].

Theorem A.7.1 (Sobolev embedding theorem). Let � be an bounded, Lipschitz,
open subset of Rn

, n œ N. Let j Ø 0 and k Ø 1 be integers and let 1 Æ p < Œ.
Then, we have the following continuous embeddings:

1. If kp < n, then

W
j+k,p(�) Òæ W

j,q(�) , for p Æ q Æ np

n ≠ kp
.

In particular,

W
k,p(�) Òæ L

q(�) , for p Æ q Æ np

n ≠ kp
.

2. If kp = n, then

W
j+k,p(�) Òæ W

j,q(�) , for p Æ q < Œ .

In particular,
W

k,p(�) Òæ L
q(�) , for p Æ q < Œ .

3. If kp > n, then

W
j+k,p(�) Òæ W

j,q(�) , for p Æ q Æ Œ .

In particular,
W

k,p(�) Òæ L
q(�) , for p Æ q Æ Œ .
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Furthermore,

1. If kp > n > (k ≠ 1)p, then

W
j+k,p(�) Òæ Cj,⁄(�̄) , for 0 < ⁄ Æ k ≠ n

p
.

2. If (k ≠ 1)p = n, then

W
j+k,p(�) Òæ Cj,⁄(�̄) , for 0 < ⁄ < 1 .

In particular, if n = k ≠ 1 and p = 1, it holds for ⁄ = 1 as well.

Proof. The proof can be found in [1, §4].

Next, we present a useful embedding result holding for L
p spaces that comprise

functions mapping time into other L
p spaces. Its proof directly follows from an

application of the standard interpolation inequality A.6.3.

Proposition A.7.2. Let [0, T ] µ R be a time interval and let � be an open subset
of Rn

, n œ N.

L
Œ(0, T ; L

r(�)) fl L
p(0, T ; L

s(�)) Òæ L
q(� ◊ (0, T )) ,

for q satisfying

(1 ≠ –)q = p and –

r
+ 1 ≠ –

s
= 1

q
, where 0 Æ – Æ 1 .

A.8 A regularity theorem for elliptic equations

In this section, one of the regularity results for elliptic equations is given. In par-
ticular, we report that holding for Neumann boundary conditions.

Theorem A.8.1 (Regularity for the Neumann problem). Let � µ Rn
, n œ N, be

an open, bounded subset of class C2. Let f œ L
2(�) and v œ H

1(�) satisfy
⁄

�
Òv · ÒÏ dx +

⁄

�
vÏ dx =

⁄

�
fv dx , ’Ï œ H

1(�) . (A.5)

Then, v œ H
2(�) and ÎvÎH2(�) Æ cÎfÎL2(�), where c is a constant depending only

on �.

Proof. The proof can be found in [8, §9.6]

Notice that (A.5) is the weak formulation of ≠�v + v = f in � endowed with the
Neumann boundary condition Òv · ‹ = 0 on ˆ�, where ‹ is the unit outer normal
vector to the boundary ˆ�. Thus, if v, �v œ L

2(�) and Òv · ‹ = 0 on ˆ�, then
Theorem A.8.1 allows us to conclude that v œ H

2(�).
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A.9. Compactness theorems

A.9 Compactness theorems

In this section, we present some compactness results, fundamental for our applica-
tions of functional analysis to partial di�erential equations.

First of all, we recall that, for any metric space X with distance d, the notion
of compactness and sequential compactness coincide. Thus, if X is compact, any
X-valued sequence admits at least a subsequence which converges in X. Similarly,
if any A µ X is compact, any A-valued sequence admits at least a subsequence
which converges in A. Otherwise, if the closure of A, but not A, is compact, any
A-valued sequence admits at least a subsequence which converges in X, hence not
necessarily in A. In this case, we say that A is relatively (sequentially) compact.
We can now give the definition of compact operator.

Definition A.9.1. Suppose X and Y are Banach spaces and BX is the open unit
ball in X. A linear map T : X æ Y is said to be compact if T (BX) is relatively
compact, i.e., its closure is compact in Y .

For any linear bounded operator T : X æ Y , where X, Y Banach spaces, there
exists a unique linear bounded operator T

Õ : X
Õ æ Y

Õ that satisfies ÈTx, y
ÕÍ =

Èx, T
Õ
y

ÕÍ, ’x œ X, y
Õ œ Y

Õ
, and such that its operator norm is equal to that of T

(see [58, Theorem 4.10]). Furthermore, the following result holds true:

Lemma A.9.1. Suppose X and Y are Banach spaces and consider a linear bounded
operator T : X æ Y . Then, T is compact if and only if T

Õ is compact.

Proof. The proof can be found in [58, Theorem 4.19].

Thus, since a compact embedding is nothing but a continuous embedding with an
inclusion map that is not only continuous but also compact, we observe that if X

is compactly embedded in Y , i.e., X µµ Y , then Y
Õ is compactly embedded in X

Õ,
i.e., Y

Õ µµ X
Õ.

The Ascoli-Arzelà theorem is a fundamental result giving necessary and su�-
cient conditions to decide whether every sequence of a family of continuous Banach
space valued functions defined on a compact metric space has a uniformly conver-
gent subsequence.

Theorem A.9.2 (Ascoli-Arzelà theorem). Let X be a compact metric space with
distance d and let Y be a Banach space with norm Î·ÎY . Let F µ C(X; Y ). F is
relatively compact in C(X; Y ) if and only if

1. for all x œ X, F is equicontinuous in x, i.e., ’‘ > 0 ÷” > 0 such that,
’y œ X : d(x, y) < ”, Îf(x) ≠ f(y)ÎY Æ ‘, ’f œ F ;

2. F is pointwise relatively compact, i.e., ’x œ X, F(x) := fifœF{f(x)} is
relatively compact in Y .

Proof. The proof can be found in [60, §5.2].
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Next, we are concerned with the compactness of the Sobolev continuous em-
beddings stated in Theorem A.7.1.

Theorem A.9.3 (Sobolev compact embedding theorem). Let � be a bounded,
Lipschitz, open subset of Rn

, n œ N. Let j Ø 0 and k Ø 1 be integers and let
1 Æ p < Œ. Then, we have the following compact embeddings:

1. If kp < n, then

W
j+k,p(�) µµ W

j,q(�) , for 1 Æ q <
np

n ≠ kp
.

In particular,

W
k,p(�) µµ L

q(�) , for 1 Æ q <
np

n ≠ kp
.

2. If kp = n, then

W
j+k,p(�) µµ W

j,q(�) , for 1 Æ q < Œ .

In particular,
W

k,p(�) µµ L
q(�) , for 1 Æ q < Œ .

3. If kp > n, then

W
j+k,p(�) µµ W

j,q(�) , for 1 Æ q Æ Œ .

In particular,
W

k,p(�) µµ L
q(�) , for 1 Æ q Æ Œ .

Furthermore,

1. If kp > n Ø (k ≠ 1)p, then

W
j+k,p(�) µµ Cj,⁄(�̄) , for 0 < ⁄ < k ≠ n

p
.

2. If kp > n, then
W

j+k,p(�) µµ Cj(�̄) .

Proof. The proof can be found in [1, §6].

In the study of nonlinear evolutionary partial di�erential equations, in order
to prove the existence of solutions, typically, one first constructs approximate so-
lutions, then uses some compactness result to show that there is a convergent
subsequence of approximate solutions whose limit is a solution. A compactness cri-
terion in the theory of Sobolev spaces of Banach space-valued functions is given by
the Aubin–Lions lemma (or theorem).
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A.10. Convergence theorems

Theorem A.9.4 (Aubin-Lions-Simon lemma). Let X0, X and X1 be three Banach
spaces such that X0 µµ X Òæ X1, i.e., X0 is compactly embedded in X and X is
continuously embedded in X1. For 1 Æ p, q Æ Œ, let

W = {u œ L
p(0, T ; X0) | ut œ L

q(0, T ; X1)}.

1. If p < Œ, then the embedding of W into L
p(0, T ; X) is compact.

2. If p = Œ and q > 1, then the embedding of W into C([0, T ]; X) is compact.

Proof. The proof can be found in [5] and in [63].

At last, we provide a result whose corollaries plays a crucial role in deducing
convergence of sequences of approximate solutions in the proofs of the existence
of solutions to evolution equations. We suppose the reader to be familiar with the
theory of weak topologies, reflexive and separable spaces. A standard reference is
given by [8, §3].
Let X be a Banach space and let X

Õ be its dual space. Let B̄X be the closed unit
ball of X, while let B̄XÕ be the closed unit ball of X

Õ.

Theorem A.9.5 (Banach-Alaoglu-Bourbaki theorem). B̄XÕ is compact with re-
spect to the weak star topology.

Proof. The proof can be found in [8, §3.4].

Corollary A.9.6. If X is separable, then B̄XÕ is sequentially compact with respect
to the weak star topology. In other words, if {x

Õ
n}n µ X

Õ is a bounded sequence,
then there exists a subsequence {x

Õ
nk

}nk which converges in X
Õ with respect to the

weak star topology.

Corollary A.9.7. If X is reflexive, then B̄X is sequentially compact with respect
to the weak topology. In other words, if {xn}n µ X is a bounded sequence, then
there exists a subsequence {xnk}nk which converges in X with respect to the weak
topology.

A.10 Convergence theorems

In this section, we introduce some convergence theorems which can be found in the
Appendix of [7] due to C. Sbordone. We suppose the reader to be familiar with
weak convergence in L

p spaces, which can be found in [8, §3-4].
We will denote the weak convergence by Ô.

Let � be a bounded, open subset of Rn
, n œ N. Recall that a sequence of real-

valued function {vn}n defined on � is said to converge almost everywhere on � to
v if and only if the set {x œ � | vn(x) does not converge to v(x)} has measure zero.

Proposition A.10.1. Let 1 Æ p Æ Œ. Let {vn}n be a sequence in L
p(�) such

that vn æ v strongly in L
p(�). Then, there exists a subsequence {vnk}nk such that

vnk æ v almost everywhere in �.
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Lemma A.10.2. Let 1 < p < Œ and let c > 0. Let {vn}n be a sequence in L
p(�)

such that vn æ v almost everywhere in � and ÎvnÎLp(�) Æ c, ’n œ N. Then, vn Ô v

in L
p(�) and v œ L

p(�).

Theorem A.10.3. Let 1 Æ q < p < Œ. Let {vn}n be a sequence in L
p(�). If

vn Ô v in L
p(�) and vn æ v almost everywhere in �, then vn æ v strongly in

L
q(�).

Proof. The proof can be found in [7, Appendix].

Remark A.10.4. Notice that, due to (A.3), both the above results hold true also
for sequences belonging to L

p spaces of L
p space-valued functions. Furthermore,

they can be generalized to L
p1 spaces of L

p2 space-valued functions for p1 ”= p2,
1 Æ p1, p2 < Œ.

At last, we present a result that directly follows from the definition of weak
convergence.

Proposition A.10.5. Let X, Y be Banach spaces and let {xn}n µ X be a sequence
such that xn Ô x in X. Consider a linear and continuous operator T : X æ Y .
Then, Txn Ô Tx in Y .

A.11 Io�e’s theorem

In this section, we report the statement of a lower semicontinuity result due to A.D.
Io�e [33]. This can be useful in the study of evolution equations in order to recover
at least an inequality when passing to the limit in the approximate problem.

Theorem A.11.1 (Io�e’s theorem). Let Q µ Rd be a smooth, bounded, open
subset and let f : Q ◊ Rl ◊ Rm æ [0, +Œ], d, l, m œ N, d, l, m Ø 1, be a measurable
non-negative function such that:

f(y, ·, ·) is lower semicontinuous on Rl ◊ Rm for every y œ Q,

f(y, w, ·) is convex on Rm for every (y, w) œ Q ◊ Rl
.

Let also (wn, vn), (w, v) : Q æ Rl ◊ Rm be measurable functions such that

wn æ w almost everywhere in Q , vn Ô v in L
1(Q) .

Then,

lim inf
næ+Œ

⁄

Q

f(y, wn(y), vn(y)) dy Ø
⁄

Q

f(y, w(y), v(y)) dy .

Proof. The proof can be found in [33].
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A.12. Theory of traces in Sobolev spaces

A.12 Theory of traces in Sobolev spaces

In this section, we discuss the possibility of assigning boundary values along ˆ�
to v œ W

2,p(�), where � is a bounded, Lipschitz, open subset of Rn
, n œ N. If

v œ C(�), then clearly v has values on ˆ� in the usual sense. The problem is that a
typical function v œ W

2,p(�) is not in general continuous and, even worse, is only
defined almost everywhere in �. Since ˆ� has n-dimensional Lebesgue measure
zero, there is no direct meaning we can give to the expression “v restricted to ˆ�”.
The notion of traces resolves this problem.

Theorem A.12.1 (Trace theorem). Let � be a bounded, Lipschitz, open subset of
Rn

, n œ N. Let 1 Æ p < Œ. Then, there exist surjective, bounded, linear operators

T0 : W
1,p(�) æ W

1≠ 1
p ,p(ˆ�) and T1 : W

2,p(�) æ W
1≠ 1

p ,p(ˆ�)

such that
T0v = v|ˆ� , if v œ W

1,p(�) fl C(�̄) ,

T1v = Òv|ˆ� · ‹ , if v œ W
2,p(�) fl C1(�̄) ,

where ‹ is the unit outer normal vector to the boundary ˆ�.

Proof. For p = 2, the proof can be found in [39]. Otherwise, for p ”= 2, we refer to
the references in [39].

Definition A.12.1. We say that T0v is the trace of v on ˆ�, while T1v is the trace
of the normal component of Òv on ˆ�.
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